共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective have been to establish if those ions which are known to change the stability of the structure of proteins, have any influence on the properties of ionizable polypeptides. Potentiometric titrations and complementary optical rotation data are presented for aqueous solutions of poly-L -lysine (PLL) in the presence of KSCN, KCl, and KF, and for poly(L -glutamic acid) (PLGA) in the presence of KSCN, KCl, and LiCl. The following measured quantities which are affected by salt concentration were obtained: intrinsic pK (pK0), slope of pKapp versus degree of ionization (α) curves, the degree of ionization at which the helix to coil transition occurs, and the free energy of this transition for the uncharged molecule (δG°hel). The effects of nonspecific salts (KCl and LiCl for PLL and KSCN and KCl for PLGA) are small, and about, as expected from general electrostatic considerations. In line with the observations made with isoelectric and cat ionic collagen, specific, effects were noted with KSCN–PLL and with LiCl–PLGA. In the presence of KSCN, the poly-L -lysine helix becomes stabilized at much lower degree of ionization than in the presence of KCl, and the slope of the pKapp versus α plots is greatly reduced. However, ΔG°hel (for the uncharged molecule) is not affected, and pK0 is only slightly higher. We interpret these data in terms of binding of SCN? primarily to the side-chain amino groups (both to R? NH3+ and to R? NH2) solutions. (L -glutamic acid) in LiCl solution has its transition at the same α value as in KCl solution. However, both the slopes of the pKapp versus α plots and the absolute values of ΔG°hel are lower than in KCl solution. We interpret these results in terms of binding of Li+ to side chains as well as to the peptide bond. 相似文献
2.
The dielectric features of poly(L -glutamic acid) are studied by the Fourier synthesized pseudorandom noise method in a time domain combined with a four-electrode cell. Polymer concentration dependence, the effect of the solvent viscosity, salt effects, and pH dependence are studied concomitantly with measurements of CD. A helix-to-coil transition occurs near pH 5.6 for a salt-free solution; at higher pH values, the polymer has an ionized random-coil conformation, and at lower pH, it has a deionized α-helical conformation. When it is in the ionized random-coil conformation, with the usual features of an electrolytic polymer, the solution shows a relaxation spectrum with a large dielectric increment at low frequencies. In the deionized α-helical state, no distinct relaxation curves are obtained, which does not deny the existence of a permanent peptide dipole. The pH dependence of the dielectric increment does not mainly correspond to the conformational change from helix to coil, but rather corresponds to the change of chain expansion on account of a charge–charge interaction under low ionic strength, which is conceived of by a viscosity measurement. 相似文献
3.
4.
Titration of an aqueous solution of sodium poly-L-glutamate with a strong acid usually produces turbidity and precipitation before the equivalence point is reached. In 1M sodium p-toluenesulfonate and 1M sodium methylcyclohexanesulfonate aggregation was delayed for days to months. In very concentrated tetra-n-butylammonium chloride and bromide the polymeric acid dissolved and could be titrated with NaOH. However, potentiometric titration curves in these solutions did not yield information (by way of plots of apparent pK versus the degree of neutralization) about the helix-to-coil transition of the polymer. It was argued in addition that the apparent pK of a weak polyelectrolyte should not be calculated from titrations in concentrated salt solutions since it is a mixed or composite quantity. It contains not only the effect of the salt on the dissociation of the weak electrolyte but its effect on the activity coefficient of hydrogen ions as well. Circular dichroic spectra were therefore measured a t various degrees of neutralization of poly(L -glutamic acid) in a number of aqueous salt solutions and mixtures of organic solvents with water. It was found that the undissociated polymer in the concentrated methylcyclohexanesulfonate and quaternary ammonium halide solutions had the spectrum of a right-handed α helix. The n → π* band at 222 mμ was used as a measure of the fraction of polymer in the helical conformation. The value of ? Δε for the undissociated polyacid in these organic electrolyte solutions was 11.4. By means of this value and a number of assumptions, the fraction of helix (fh) as a function of α, the degree of polyacid neutralization, was calculated for the different solvent mixtures. An empirical equation was used to describe the variation of fh with α, fh = 1/(1 + e?a+bα), in which b represents the degree of cooperativeness of the transition, and a is a measure of the effect of the medium on the onset of the transition. The values of b did not differ very much from one another, suggesting that the cooperativeness of the transition was not sensitive to changes in the medium. On the other hand, the value of a (or its equivalent, the value of α at the halfway point in the transition) was more dependent on the solvent. Comparisons of these results with those of some other workers were made by means of the empirical equation. 相似文献
5.
Further direct evidences are given that a clear correlation exists between potentiometric and spectroscopic measurements in monitoring the poly(L-glutamic, acid) helix+ coil transtition. Specific Li+ ion poly (L -glUtamic acid) interactions have been observed, suresting that Li+ ions may exert a distinct destabilizing action on the helical conformation of the polyelectrolyte. 相似文献
6.
Lamellar single crystals of alkaline earth salts of poly(L -glutamic acid) have been grown by precipitation from dilute aqueous solution and studied by optical and electron microscopy and by x-ray and electron diffraction. The calcium, strontium and barium salts were crystallized in the β form above room temperature and could be converted to crystals of β-poly(L -glutamic acid) by washing in dilute hydrochloric acid. The magnesium salt, on the other hand, was crystallized in the α form at or below room temperature but could not be converted into crystals of α-poly(L -glutamic acid) by washing in hydrochloric acid. The crystalline lamellae are very thin (thicknesses range from 25 to 60 Å in β crystals and are about 100 Å in α crystals) and the polypeptide chains are oriented normal to the planes of the lamellae. It is clear from the disparity between crystal thickness and molecular length that the molecules crystallize by folding at the upper and lower surfaces of the crystals. Conformations of the molecules at these folds are discussed briefly. 相似文献
7.
Kankia BI 《Biopolymers》2004,74(3):232-239
A combination of ultrasound velocimetry, density, and UV spectroscopy has been employed to study the hydration effects of binding of Mn(2+) and alkaline-earth cations to poly(rA) and poly(rU) single strands. The hydration effects, obtained from volume and compressibility measurements, are positive due to overlapping the hydration shells of interacting molecules and consequently releasing the water molecules to bulk state. The volume effects of the binding to poly(rA), calculated per mole of cations, range from 30.6 to 40.6 cm(3) mol(-1) and the compressibility effects range from 59.2 x 10(-4) to 73.6 x 10(-4) cm(3) mol(-1) bar(-1). The volume and compressibility effects for poly(rU) are approximately 17 cm(3) mol(-1) and approximately 50 x 10(-4) cm(3) mol(-1) bar(-1), respectively. The comparative analysis of the dehydration effects suggests that the divalent cations bind to the polynucleotides in inner-sphere manner. In the case of poly(rU) the dehydration effects correspond to two direct coordination, probably between adjacent phosphate groups. The optical study did not reveal any effects of cation on the secondary structure or aggregation of poly(rU). In the case of single-helical poly(rA) binding is more specific: dehydration effects correspond to three to five direct contacts and must involve atomic groups of adenines, and the divalent cations stabilize and aggregate the polynucleotide. 相似文献
8.
pH titration measurements of poly- S-carboxymethyl-L -cysteine were undertaken in the aqueous Nacl solution in relation to the β form–random coil transition. The titration curves show a marked molecular weight dependence because of the shortened chain length of materials. Comparison of the optical rotatory dispersion parameter a0 with the titration curve reveals that the titration curve apparently reflects a β structure–random coil transition. The β form of this polymer is assumed to be an intramolecular β form, rather than a β structure stabilized by an intermolecular hydrogen bond, at least in the polymer concentration range considered here. The standard free energy change per amino acid residue for the transition from un-ionized random coil to un-ionized β form is estimated to be about ?750 cal/mole residue in the range of 0.005–0.2M NaCl concentration. 相似文献
9.
Pinacyanol in the presence of an excess of poly(L -glutamic acid) [polymer/dye ratio (P/D) > 10] exhibits different absorption spectra in the visible region when bound to the slightly charged polypeptide in the α-helical conformation or to the nearly completely dissociated polypeptide in the coillike conformation. These spectra reveal aggregation of the dye bound to the macromolecular chain in both conformations, although in the coillike one different kinds of aggregates may be present. Dye binding is accompanied by the appearance of CD bands in the visible region which are also different for the α-helical and the coillike conformations. The aggregates formed in the presence of the latter change slowly in time and seem to induce some conformational changes in the polypeptide chain. Furthermore, they have been found to be, at least partially, stable with respect to a subsequent reversal to the α-helical conformation. All results could be qualitatively interpreted assuming that in the coillike conformation, ordered regions exist along the chain as proposed by Krimm and Tiffany. 相似文献
10.
Potentiometric titrations and some complementary optical rotation data are presented for solutions of poly(L - glutamic acid) (PGA) in several H2O–ethanol mixtures. The data allow the determination of the intrinsic pK (pK0), slope of the apparent. pK (pKapp), versus degree of ionization curves and of the enthalpy of ionization as a function of ethanol concentration. The variation of the degree of ionization at which the helix–coil transformation occurs with ethanol and temperature is also determined. Finally free energy, enthalpy, and intropy changes associated with the helix–coil transformation for the uncharged conformers are determined from the titration curves. The effect of the ethanol is to increase the stability of the helical conformation of PGA for both the charged and the uncharged forms of the polymer. The stabilization of the uncharged helix is essentially an entropic effect. 相似文献
11.
We are reporting alternating multiblock copolymers of poly(L-lactic acid)/poly(ethylene glycol) aqueous solution (> 15 wt %) undergoing sol-gel-sol transition as the temperature increases from 20 to 60 degrees C. Micelles of the multiblock copolymers (in water) are about 20 nm in radius at low temperature. They are aggregated to a larger size as the temperature increases, which should play a critical role in the sol-to-gel transition. The transition temperature and gel window were affected by the molecular weight and composition of the multiblock copolymer. In particular, the aqueous solution of an alternating multiblock copolymer (Mn approximately 6700 daltons) prepared from poly(ethylene glycol) (Mn approximately 600 daltons) and poly(L-lactic acid) (Mn approximately 1300 daltons) showed a maximum modulus at body temperature (37 degrees C). The in situ gel forming ability of the polymer aqueous solution in vivo as well as in vitro indicates that it can be a promising injectable biomaterial. 相似文献
12.
The cooperative conformational transition of poly(L-glutamic acid) induced by pH is monitored by the titration curves from literature. The polyelectrolytic approach described in the preceding article (A. Cesàro, S. Paoletti and J.C. Benegas, Biophys. Chem. 39 (1991) 1) is used to fit the experimental curves under various conditions of ionic strength and temperature, with the sole assumption that each polymeric state is characterized by a proper conformational flexibility. The helix-coil transition of the system becomes molecularly defined by the balance between the non-ionic conformational energy and the repulsive electrostatic energy of the two forms. Implications of the results of the theoretical model on the energetics of the cooperative order-disorder transition are discussed. 相似文献
13.
Organic solvent-induced coil → helix conformational change of poly(sodium) L -glutamate (NaPLG) and poly(cesium L -glutamate) (CsPLG) in solution in aqueous mixed solvents have been studied at 25°C. Heats of dilution of NaPLG in the water–dioxane pair have been measured as a function of polymer concentration and solvent composition. The results indicate that the overall chain conformation in the disordered form is not too different from that in the α-helical form. Heat capacity measurements by flow microcalorimetry have also been done. The apparent monomolar heat capacity at constant pressure of the polymer, Cp, ?, decreases with dilution similarly to other strong polyelectrolytes in aqueous media. In the water–dioxane pair, Cp, ? increases with the dioxane content due to partial desolvation of ionic species resulting from increasing ionic association. In the case of the water-2-chloroethanol (CE) pair, the transition takes place at low CE content and results show a fast decrease in Cp, ? when the α-helical conformation predominates. It is believed carboxylate groups and CE molecules associate themselves into a complex formation responsible for the transition. The size of the cation plays a significant role in the thermodynamic properties of these polyelectrolytes in solution since sodium ions are more strongly bound to the chain than cesium ions. 相似文献
14.
The binding of the methylmercury cation CH3Hg+ by poly(L -glutamic acid) (PGA) and by poly(L -lysine) (PLL) has been investigated by Raman spectroscopy. Coordination on the side-chain COO? and NH groups of these polypeptides gave characteristic ligand–Hg stretching modes at ca. 505 and 450 cm?1, respectively. Precipitation generally occurred upon formation of the complexes and changes of conformation were common. The solid complex obtained from PGA at pH 4.6 was found to have a mostly disordered conformation, which differed from the respective α-helical and β-sheet structures of the dissolved and precipitated uncomplexed polypeptide in the same conditions. An α-helical structure was generally adopted by the complex formed with PLL, even in pH and temperature conditions where the free polypeptide normally exists in another conformation. The addition of a stronger complexing agent, glutathione, to the PLL/CH3Hg+ complex caused a migration of the bound cations and a restoration of the polypeptide to its original state. 相似文献
15.
A polarimetric electric-field-jump relaxation apparatus is described and used to determine the relaxation spectrum for the helix–coil transition of poly(α,L -glutamic acid) in water at 24°C. A maximum relaxation time of 1.7 μc occurs at the transition midpoint (pH = 5.9) yielding a rate constant for helical growth of 6 × 107 sec?1. 相似文献
16.
In order to provide preliminary data for the interpretation of the spectrophotometric titration properties of RNA, the spectral changes accompanying the ionization of poly-(uridylic acid) have been determined, as have the ionization constants as a function of salt concentration and the enthalpies and entropies of ionization. The spectral propertics and ionization constants of poly (uridylic acid) have been compared with those of 2′(3′) Uridine monophosphate and of uridine; significant, differences have been established. The results obtained are consistent with the hypothesis that uracil residues in poly U are stacked only in concentrated salt solutions. 相似文献
17.
The coil–helix transitions of poly (L -glutamic acid) in aqueous alcohol solutions have been investigated for mixed counterion systems. It has been found that coexistence of two kinds of counterion species, i.e., two alkali metal counterions, alkali and alkaline earth metal, and two alkaline earth metals, specifically stabilizes or destabilizes the helix conformation depending upon the combination of the counterion species. The most striking enhancement of the helix content was observed for the combination of Li+ and K+ counterions. It has been suggested that the helix stabilization is attributed to the reduction of the free energy in the contact ion pair formation between the polymer charges and the counterions in the mixed counterion systems. © 1993 John Wiley & Sons, Inc. 相似文献
18.
The anisotropic rotational motion of the backbone and the side chains of poly(L -glutamic acid) in the α-helical structure was investigated using the 13C-T1 and T2 relaxation times of all carbon atoms with directly attached protons, obtained at a 13C-Larmor frequency of 67.89 MHz. The evaluation of the nmr data was carried out according to the previously derived anisotropic diffusion model, in which the macromolecule is considered a rigid rod. The rotation of the backbone is characterized by two diffusion constants, D1 and D3, describing the rotation perpendicular to and around the symmetry axis. The additional internal motion of the Cβ-methylene group is described as a jump process with a jump rate, k1, between two allowed rotametric states. Steric considerations indicate that the occupation of the third rotameric position is forbidden. The rotation of the Cγ-methylene group is decribed as a one-dimensional diffusion process around the Cβ–Cγ bond. Investigation of the temperature dependence of the relaxation parameters led to the temperature dependence of the dynamic parameters. Activation energies were determined from these data. The dynamic parameters obtained for poly(L -glutamic acid) at 291 K are compared with the corresponding results of a previous study of poly(L -lysine). The development of an anisotropic diffusion model for the motions of the rod-shaped poly(L -lysine) α-helix and its application to the interpretation of the 13C-relaxation data of this molecule have already been published previously. In this model, both the overall molecular tumbling and the various internal motions have been characterized by diffusion constants or jump rates typical for each process. These dynamic parameters can be calculated from the spin–lattice relaxation times, the spin–spin relaxation times and the NOE factors of the Cα, Cβ, and Cγ nuclei of the polypetide. In the present paper, we describe the application of the above-mentioned dynamic model to the interpretation of 13C-relaxation studies of a further homopolypeptide, poly(L -glutamic acid), in the α-helical structure. Furthermore, we studied the temperature dependence of the relaxation times of this polymer and determined the anisotropic diffusion parameters at each temperature. From their temperature dependence and from comparison of our present results with the data of our previous study of poly(L -lysine), we were able to derive new insights into the intramolecular diffusion processes and the excitation of various motions. 相似文献
19.
Sodium counterion association with partially neutralized poly(D -glutamic acid) or poly(DL -glutamic acid) was measured by use of Wall's transference method with radioactive sodium. In the region where both polyacids are in completely random coil form, fractions of association were considerably less than that with poly(acrylic acid) in the same region of degree of neutralization. Even in the region where poly (D -glutamic acid) is in the helical form, the fraction of association was less than that with poly(acrylic acid) in the same region. No pronounced characteristics attributable to counterion association corresponding to the helix–coil transition could be found. The association phenomena were discussed on the basis of a rodlike model of polyelectrolyte. 相似文献
20.
Modern polymer chemistry has led to the generation of a number of biocompatible synthetic polymers that have been increasingly studied as efficient carriers for drugs and imaging agents. Synthetic biocompatible polymers have been used to improve the efficacy of both small-molecular-weight therapeutics and imaging agents. Furthermore, multiple targeted anticancer agents and/or imaging reporters can be attached to a single polymer chain, allowing multifunctional and/or multimodality therapy and molecular imaging. Having both an anticancer drug and an imaging reporter in a single polymer chain allows noninvasive real-time visualization of the pharmacokinetics of polymeric drug delivery systems, which can uncover and explain the complicated mechanisms of in vivo drug delivery and their correlation to pharmacodynamics. This review examines the use of the synthetic biocompatible polymer poly(L-glutamic acid) (PG) as an efficient carrier of cancer therapeutics and imaging agents. This review summarizes and updates our recent research on the use of PG as a platform for drug delivery and molecular imaging, including recent clinical findings with respect to PG-paclitaxel (PG-TXL), the combination of PG-TXL with radiotherapy, mechanisms of action of PG-TXL, and noninvasive visualization of in vivo delivery of polymeric conjugates with contrast-enhanced magnetic resonance imaging, optical imaging, and multimodality imaging. 相似文献