首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzimidazole is a neutral ligand which is often used to synthesize bioactive compounds. Two transition metal benzimidazole-based complexes, namely, vanadium (IV) dioxido complex (complex 1) and vanadium (V) oxido-peroxido complex (complex 2) with tridentate benzimidazole ligand, 2,6-di (1H-benzo[d]imidazol-2-yl) pyridine (Byim) have been designed with the intention of developing potential DNA nuclease. Different studies involving biochemical and biophysical techniques along with molecular docking suggest that both the complexes interact with DNA, while the mode of binding is intercalation. The complexes were further used for DNA cleavage activity. Both of them were found to have substantial DNA nuclease activity, but complex 2 was more potent than complex 1 in exhibiting such activity.  相似文献   

2.
Two zinc(II) terpyridine complexes Zn(atpy)2(PF6)2 (1) (atpy = 4′-p-N9′-adeninylmethylphenyl-2,2′:6,2′′-terpyridine) and Zn(ttpy)2(PF6)2 (2) (ttpy = 4′-p-tolyl-2,2′:6,2′′-terpyridine) have been synthesized and characterized by elemental analysis, 1H NMR and electrospray mass spectroscopy. The structure of complex 2 was also determined by X-ray crystallography, which revealed a ZnN6 coordination in an octahedral geometry with two terpyridine acting as equatorial ligands. The circular dichroism data showed that complex 1 exhibited an ICD signal at around 300 nm and induced more evident disturbances on DNA base stacking than complex 2, reflecting the impact of the adenine moiety on DNA binding modes. Complex 1 exhibited higher cleavage activity to supercoiled pUC 19 DNA than complex 2 under aerobic conditions, suggesting a promotional effect of adenine moiety in DNA nuclease ability. Interestingly, both complexes demonstrated potent in vitro cytotoxicity against a series human tumor cell lines such as human cervix carcinoma cell line (HeLa), human liver carcinoma cell line (HepG2), human galactophore carcinoma cell line (MCF-7) and human prostate carcinoma cell line (pc-3). The cytotoxicity is averagely 10 times more active than the anticancer drug cisplatin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Metal complexes of the type [Co(phen)2(4-NO2pcyd)2].CH3OH, 1, [Zn(phen)2(4-NO2pcyd)2].CH3OH, 2, [Cd(phen)2(4-NO2pcyd)2], and 3, (phen?=?1,10-phenanthroline, 4-NO2pcyd?=?4-nitro phenylcyanamide) have been studied. The synthesis, characterization, and the biological activities of complexes 1-3 have been investigated. The geometries of complexes 1-3 were confirmed by single-crystal X-ray crystallography. The interactions of complexes 1-3 with human serum albumin (HSA) were studied using fluorescence and circular dichroism spectroscopy. The thermodynamic studies have showed the reaction for the binding of complexes 1-3 with HSA is hydrophobic (ΔH0???0 and ΔS0 > 0). The in vitro cytotoxic potential of complexes 1-3 and their complexes with HSA were examined. The complexes 1-3 with HSA enhance about 3-fold cytotoxicity in cancer cells lines.  相似文献   

4.
(1S,3S,4R)-1-Phenyl-1-thymidyl-3-hydroxy-4-hydroxymethylcyclopentane (10) and their analogs were synthesized, incorporated into the oligodeoxynucleotides, and their properties were evaluated for the formation of duplex and triplex DNA. The known chiral cyclopentanone derivative was converted into the corresponding ketimine sulfonamide derivative, which was subjected to a stereoselective PhLi addition. The formed sulfonamide was hydrolyzed to afford the primary amino group, on which the thymine moiety was built. The benzyl protecting groups were removed to form the nucleoside analog having a phenyl group and the thymine unit at the 1′ position of a carbocyclic skeleton (10). In the estimation of the oligodeoxynucleotides incorporating 10 for duplex and triplex formation, the carbocyclic nucleoside analog 10 did not show the stabilizing effect for duplex formation; on the other hand, it stabilized the triplex. Therefore, the skeleton of the phenyl-substituted carbocyclic nucleoside analog 10 may be a platform for the formation of stable triplex DNA.  相似文献   

5.
Abstract

Purpose: Examine the association between bulky DNA adduct levels in colon mucosa and colorectal adenoma prevalence, and explore the correlation between adduct levels in leukocytes and colon tissue.

Methods: Bulky DNA adduct levels were measured using 32P-postlabelling in biopsies of normal-appearing colon tissue and blood donated by 202 patients. Multivariable logistic regression was used to examine associations between DNA adducts, and interactions of DNA adduct-DNA repair polymorphisms, with the prevalence of colorectal adenomas. Correlation between blood and tissue levels of DNA adducts was evaluated using Spearman’s correlation coefficient.

Results: An interaction between bulky DNA adduct levels and XPA rs1800975 on prevalence of colorectal adenoma was observed. Among individuals with lower DNA repair activity, increased DNA adduct levels were associated with increased colorectal adenoma prevalence (OR?=?1.41 per SD increase, 95%CI: 0.92–2.18). Conversely, among individuals with normal DNA activity, an inverse association was observed (OR?=?0.60 per SD increase, 95%CI: 0.34–1.07). Blood and colon DNA adduct levels were inversely correlated (ρ?=??0.20).

Conclusions: Among genetically susceptible individuals, higher bulky DNA adducts in the colon was associated with the prevalence of colorectal adenomas. The inverse correlation between blood and colon tissue measures demonstrates the importance of quantifying biomarkers in target tissues.  相似文献   

6.
Abstract

An efficient synthesis of adenosine bearing pyrrolepolyamide 1 was achieved by coupling of 3 with 2. The CD spectra obtained at several [ligand ]/[duplex] ratios allowed verification of the formation complex of the DNA duplex [d(CGCAAATTGGC)/d(GCCAATTTGCG)] with 1.  相似文献   

7.
In the present study, electrospray ionization mass spectrometry (ESI-MS) and spectroscopy have been used to evaluate the non-covalent interaction, stoichiometry, and selectivity of two synthetic coumarin-attached nucleoside and non-nucleoside 1,2,3-triazoles, namely, (1-(5-(hydroxymethyl)-4-(4-((2-oxo-2H-chromen-4-yloxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-furan-2-yl)5-methyl pyrimidine-2,4(1H,3H)-dione (Tr1) and 4-((1-((-1-methyl-1H-indol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (Tr2) with two different human telomeric intermolecular G-quadruplex DNA structures formed by d(T2AG3) and d(T2AG3)2 sequences. ESI-MS studies indicate that Tr1 specifically interacts with four-stranded intermolecular parallel quadruplex complex, whereas Tr2 interacts with two hairpin as well as four-stranded intermolecular parallel quadruplex complexes. UV–Visible spectroscopic studies suggest that Tr1 and Tr2 interact with G-quadruplex structure and unwind them. Job plots show that stoichiometry of ligand:quadruplex DNA is 1:1. Circular dichroism (CD) studies of G-quadruplex DNA and Tr1/Tr2 ligands manifest that they unfold DNA on interaction. Fluorescence studies demonstrate that ligand molecules intercalate between the two stacks of quadruplex DNA and non-radiative energy transfer occurs between the excited ligand molecules (donor) and quadruplex DNA (acceptor), resulting in enhancement of fluorescence emission intensity. Thus, these studies suggest that nucleoside and non-nucleoside ligands efficiently interact with d(T2AG3) and d(T2AG3)2 G-quadruplex DNA but the interaction is not alike with all kinds of quadruplex DNA, this is probably due to the variation in the pharmacophores and structure of the ligand molecules.  相似文献   

8.
Three novel copper(II), cobalt(II), and nickel(II) complexes of lapachol (Lap) containing 110-phenanthroline (phen) ligand, [M(Lap)2(phen)] (M=Cu(II), 1, Co(II), 2, and Ni(II), 3), have been synthesized and characterized using, elemental analysis and spectroscopic studies. Their interactions with calf thymus DNA (CT DNA) were investigated using viscosity, thermal denaturation, circular dichorism, fluorescence quenching, and electronic absorption spectroscopy. The DNA cleavage abilities of 13 have been studied, where cleavage activity of copper complex 1 is more than the complexes 2 and 3. The in vitro cytotoxic potential of the complexes 1–3 against human cervical carcinoma (HeLa), human liver hepatocellular carcinoma (HepG-2), and human colorectal adenocarcinoma (HT-29) cells indicated their promising antitumor activity with quite low IC50 values in the range of .15–2.41 μM, which are lower than those of cisplatin.  相似文献   

9.
In order to explore the biological potential, some synthesized triazolylnucleosides were evaluated for their antibacterial, tyrosinase and DNA photocleavage activities. Triazolylnucleosides (5–12) were screened against Staphylococcus aureus (ATCC 6538), gram-positive and Escherichia coli (ATCC 10536), gram-negative bacterial strains. Among the series, compound 9 exhibited a significant level of antibacterial activity against both strains at higher concentration in reference to the standard drug, Levofloxacin. Tyrosinase activity and inhibition of these compounds were also studied, and it has been found that compounds 8 and 11 displayed more than 50% inhibitory activity. In addition, six compounds (7–12) were evaluated for their DNA photocleavage activity. The compounds 8 and 12 exhibited excellent DNA photocleavage activity at a concentration of 10 μg and may be used as template for antitumor drugs in the future.  相似文献   

10.
A new genus belonging to the braconid wasp subfamily Doryctinae, Kauriphanes n. gen. (type species K. khalaimi n. sp.), is described from New Zealand. This genus is placed within the doryctine subtribe Caenophanina. The extent of this subtribe is discussed and the phylogenetic relationships of three of its genera were investigated using one mitochondrial and one nuclear DNA sequence markers. Similar to previous studies, the Bayesian analyses performed significantly support a clade with the included members of Caenophanina as a sister group of a clade with the examined species of Spathiini sensu stricto. The placement of the Caenophanini within Doryctini, however, is left pendant to further exhaustive phylogenetic studies. A key to genera and subgenera belonging to Caenophanina is given.  相似文献   

11.
Both trans- and cis-[PtCl2(NH3)(L)] compounds have been synthesized, L representing either the imino ether HN=C(OMe)Me having a Z or E configuration at the C=N double bond, or the cyclic ligands and (compounds 14 for trans geometry and 58 for cis geometry, respectively). The cyclic ligands mimic the imino ether ligands but, differently from imino ethers, cannot undergo change of configuration. In a panel of human tumor cells, trans compounds inhibit growth much more than transplatin. Moreover, compound 1 in most cases is less active than 2, and 1 and 2 are less active than 3 and 4, respectively. For cis compounds with imino ethers, the activity is reduced (5) or unaffected (6) with respect to cisplatin. Moreover, unlike trans compounds, substitution of cyclic ligands (7, 8) for imino ethers (5, 6) generally decreases the activity. This determines, for compounds with cyclic ligands, an unusual inversion of the cis geometry requirement for activity of platinum(II) species. Importantly, 14 and 58 partially circumvent the multifocal cisplatin resistance of A2780cisR cells, and 14 also overcome resistance from reduced uptake of 41McisR cells. DNA interaction regioselectivity of 14 and 58 is not substantially modified with respect to transplatin and cisplatin. However, both imino ethers and cyclic ligands slow down the DNA interstrand cross-link reaction, (E)-HN=C(OMe)Me and decreasing also its extent. Therefore, DNA interaction of 14 and 58 appears to be characterized by persistent monoadducts (14), and by monoadducts and/or intrastrand cross-links structurally different from those of cisplatin (58). This study demonstrates that ligand configuration modulates the activity of both trans and cis compounds, and supports the development of platinum drugs based on their coordination chemistry to combat cisplatin resistance.F.P. Intini and A. Boccarelli contributed equally to this work  相似文献   

12.

DNA polymerase activities were scanned in a Pyrococcus furiosus cell extract to identify all of the DNA polymerases in this organism. Three main fractions containing DNA polymerizing activity were subjected to Western blot analyses, which revealed that the main activities in each fraction were derived from three previously identified DNA polymerases. PCNA (proliferating cell nuclear antigen), the sliding clamp of DNA polymerases, did not bind tightly to any of the three DNA polymerases. A primer usage preference was also shown for each purified DNA polymerase. Considering their biochemical properties, the roles of the three DNA polymerases during DNA replication in the cells are discussed.  相似文献   

13.
Objective: This study aims to assess the effects of low-dose benzene on DNA damage and O6-methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers.

Materials and methods: We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay.

Results: The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p?<?0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage.

Discussion and conclusion: MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.  相似文献   


14.
Abstract

Oxidation of dinucleoside monophosphite triesters of ribo- and deoxyribonucleosides with iodine-[18O]H2O furnished diastereoisomeric phosphate triesters having the oxygen labels in the P=O group. Chromatographic separation of the isomers followed by deprotection yielded oxygen chiral dinucleoside monophosphates. The absolute configuration of [18O]UpA has been established.  相似文献   

15.
A novel series of bioactive water soluble mixed ligand complexes (1–5) [MII(L)(phen)AcO]. nH2O {where M?=?Cu (1) n?=?2; Co (2), Mn (3), Ni (4), n?=?4 and Zn (5) n?=?2} were synthesized from 2-(2-Morpholinoethylimino) methyl)phenol Schiff base ligand (LH), 1, 10-phenanthroline and metal(II) acetate salt in a 1:1:1 stoichiometric ratio and characterized by several spectral techniques. The obtained analytical and spectral data suggest the octahedral geometry around the central metal ion. Density functional theory calculations have been further supportive to explore the optimized structure and chemical reactivity of these complexes from their frontier molecular orbitals. Gel electrophoresis result indicates that complex (1) manifested an excellent DNA cleavage property than others. The observed binding constants with free energy changes by electronic absorption technique and DNA binding affinity values by viscosity measurements for all compounds were found in the following order (1)?>?(2)?>?(4)?>?(5)?>?(3) > (LH). The binding results and thermodynamic parameters are described the intercalation mode. In vitro antioxidant properties disclose that complex (1) divulges high scavenging activity against DPPH?, ?OH, O2?? NO?, and Fe3+. The antimicrobial reports illustrate that the complexes (1–5) were exhibited well defined inhibitory effect than ligand (LH) against the selected different pathogenic species. The observed percentage growth inhibition against A549, HepG2, MCF-7, and NHDF cell lines suggest that complex (1) has exhibited superior anticancer potency than others. Thus, the complex (1) may contribute as potential anticancer agent due to its unique interaction mode with DNA.GRAPHICAL ABSTRACT

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Archaea-specific D-family DNA polymerase forms a heterotetramer consisting of two large polymerase subunits and two small exonuclease subunits. The N-terminal (1–300) domain structure of the large subunit was determined by X-ray crystallography, although ∼50 N-terminal residues were disordered. The determined structure consists of nine alpha helices and three beta strands. We also identified the DNA-binding ability of the domain by SPR measurement. The N-terminal (1–100) region plays crucial roles in the folding of the large subunit dimer by connecting the ∼50 N-terminal residues with their own catalytic region (792–1163).

Structured summary

DP2binds to DP2 by molecular sieving(View interaction)DP2binds to DP2 by fluorescence technology(View interaction)DP2binds to DP2 by circular dichroism(View interaction)  相似文献   

17.
An orthogonally positioned diamino/dicationic polyamide f-IPI 2 was synthesized. It has enhanced binding affinity, and it showed comparable sequence specificity to its monoamino/monocationic counterpart f-IPI 1. Results from CD and DNase I footprinting studies confirmed the minor groove binding and selectivity of polyamides 1 and 2 for the cognate sequence 5′-ACGCGT-3′. SPR studies provided their binding constants: 2.4 × 108 M−1 for diamino 2, which is ∼4 times higher than 5.4 × 107 M−1 for its monoamino analogue 1.  相似文献   

18.
In this study, two Pt(II) and three Pt(IV) complexes with the structures of [PtL2Cl2] (1), [PtL2I2] (2), [PtL2Cl2(OH)2] (3), [PtL2Cl2(OCOCH3)2] (4), and [PtL2Cl4] (5) (L = benzimidazole as carrier ligand) were synthesized and evaluated for their in vitro antiproliferative activities against the human MCF-7, HeLa, and HEp-2 cancer cell lines. The influence of compounds 1–5 on the tertiary structure of DNA was determined by their ability to modify the electrophoretic mobility of the form I and II bands of pBR322 plasmid DNA. The inhibition of BamH1 restriction enzyme activity of compounds 1–5 was also determined. In general, it was found that compounds 1–5 were less active than cisplatin and carboplatin against MCF-7 and HeLa cell lines (except for 1, which was found to be more active than carboplatin against the MCF-7 cell line). Compounds 1 and 3 were found to be significantly more active than cisplatin and carboplatin against the HEp-2 cell line.  相似文献   

19.
张姝  崔宁波  赵宇翔  张永杰 《微生物学报》2019,59(12):2346-2356
【目的】分析蛹虫草是否存在核内线粒体DNA片段,比较蛹虫草线粒体DNA与细胞核DNA的碱基变异程度及所反映的菌株间的系统发育关系。【方法】通过本地BLAST或LAST对蛹虫草线粒体基因组和核基因组进行序列相似性搜索;从10个已知线粒体基因组的蛹虫草菌株中分别扩增7个细胞核蛋白编码基因片段,并与其在14个线粒体蛋白编码基因上的碱基变异情况进行比较。【结果】蛹虫草核基因组中存在5处较短的核内线粒体DNA片段,总长只有278bp。蛹虫草核DNA的变异频率整体上高于线粒体DNA。核DNA和线粒体DNA所反映的蛹虫草菌株间的系统发育关系存在显著差异。【结论】蛹虫草线粒体DNA与核DNA间不存在长片段的基因交流,二者变异频率不同,所反映的蛹虫草菌株间的系统发育关系也有差异。本研究增加了对蛹虫草线粒体与细胞核DNA进化关系的认识。  相似文献   

20.
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5′–C5′–C4′–C3′) are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein–nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein–DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号