首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In the presence of Cu(II) ions, plasmid DNA is cleaved under physiological condition by different arenes at low concentrations. The cleavage was dependent on the presence of O2. The DNA cleavage efficiency of the designed system arene-Cu is comparable to that of the well-known DNA cleaving reagents such as phenanthroline-Cu and ascorbic acid-Cu. However in contrast to the mentioned reagents, the system arene-Cu does not require external reducing agents or H2O2.  相似文献   

2.
Mechanistic aspects of CoII(HAPP)(TFA)2 in DNA bulge-specific recognition   总被引:1,自引:0,他引:1  
A novel octahedral complex CoII(HAPP)(TFA)2 [hexaazaphenantholine-cyclophane (HAPP), trifluoroacetate (TFA)] is a DNA bulge-specific probe with single-strand DNA cleavage activity in the presence of H2O2. This complex exhibits low affinity towards double-stranded DNA and low reactivity toward single-stranded DNA. Metal–HAPP complexes with different coordination number and ring size were synthesized and their selectivity and reactivity for DNA bulges were compared. The DNA sequence at the bulge site influences the intensity of cleavage at the bulge and the flanking sites after piperidine treatment. Cleavage specificity of CoII(HAPP)(TFA)2 was characterized extensively using scavenger reagents to quench the cleavage reaction and high-resolution polyacrylamide gel electrophoresis. In addition, 3′-phosphoglycolate cleavage products were trapped and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. These data were used to deduce that the DNA cleavage pathway for CoIIHAPP2+ in the presence of H2O2 involves 4′-H abstraction of the deoxyribose moiety.  相似文献   

3.
Mechanism of bleomycin action: in vitro studies   总被引:6,自引:0,他引:6  
The cytotoxic activity of bleomucin results from DNA cleavage, which is also accomplished in vitro by reaction mixtures containing Fe(II), drug and O2. Bleomycin forms a complex with Fe(II) and O2 in the presence or absence of DNA. The species attacking DNA forms rapidly from this complex. The nature of the attacking species and of the primary lesion(s) to DNA are not yet known, but two major insults to DNA have been characterized. They are the release of free bases from their glycosidic linkages and, at other residues, the cleavage of the polymer backbone at the deoxyribose C3-C4 bond.  相似文献   

4.
Copper/zinc (Cu/ZnSOD) and manganese (MnSOD) superoxide dismutases which catalyze the dismutation of toxic superoxide anion, O inf2 sup– , to O2 and H2O2, play a major role in protecting cells from toxicity of oxidative stress. However, cells overexpressing either form of the enzyme show signs of toxicity, suggesting that too much SOD may he injurious to the cell. To elucidate the possible mechanism of this cytotoxicity, the effect of SOD on DNA and RNA strand scission was studied. High purity preparations of Cu/ZnSOD and MnSOD were tested in an in vitro assay in which DNA cleavage was measured by conversion of phage X174 supercoiled double-stranded DNA to open circular and linear forms. Both types of SOD were able to induce DNA strand scission generating single- and double-strand breaks in a process that required oxygen and the presence of fully active enzyme. The DNA strand scission could be prevented by specific anti-SOD antibodies added directly or used for immunodepletion of SOD. Requirement for oxygen and the effect of Fe(II) and Fe(III) ions suggest that cleavage of DNA may be in part mediated by hydroxyl radicals formed in Fenton-type reactions where enzyme-bound transition metals serve as a catalyst by first being reduced by superoxide and then oxidized by H2O2. Another mechanism was probably operative in this system, since in the presence of magnesium DNA cleavage by SOD was oxygen independent and not affected by sodium cyanide. It is postulated that SOD, by having a similar structure to the active center of zinc-containing nucleases, is capable of exhibiting non-specific nuclease activity causing hydrolysis of the phosphodiester bonds of DNA and RNA. Both types of SOD were shown to effectively cleave RNA. These findings may help explain the origin of pathology of certain hereditary diseases genetically linked to Cu/ZnSOD gene.  相似文献   

5.
Abstract

The O2-induced strand scission of 4′-DNA radicals is initiated by a reversible O2 addition reaction. The rate coefficient of the O2 release from the 4′-DNA peroxyl radical is 1.00 s?1 in single strands and 0.05 s?1 in double strands at 20°C. Because of this reversibility, an O2-dependent strand cleavage occurs only in the presence of H-donors which trap the 4′-DNA peroxyl radicals yielding DNA hydroperoxides. At very low H-donor concentrations the strand scission is the result of an O2-independent, spontaneous reaction even under aerobic conditions.  相似文献   

6.
A mononuclear macrocyclic complex NiIIL3a (L3a = dianion of 2,3-dioxo-5,6:13,14-dibenzo-9,10-cyclohexyl-7,12-bis(methoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene), which shows high DNA cleavage activity in the presence of H2O2, was reported in our previous work. Considering that many systems for natural enzyme-mediated DNA cleavage contain two or more metal active sites, two new trinuclear complexes [Cu(NiL3a)2(dca)2]·2CH3OH (abbreviated as Cu(NiL3a)2) and [Ag(NiL3a)2(NO3)]·2CH3OH·0.5H2O (abbreviated as Ag(NiL3a)2) were synthesized in this work, where dca is the dicyanamide. The complexes were structurally characterized by single crystal X-ray analysis. The central Cu(II) or Ag(I) atom is linked to two [NiL3a] ligands by oxamido bridges forming a trinuclear structure. In Cu(NiL3a)2, the central Cu(II) ion is in an octahedral coordination geometry. Whereas in Ag(NiL3a)2, the central Ag(I) ion is in a rarely reported trigonal-prismatic coordination geometry. The DNA cleavage behavior of the complexes in the presence of H2O2 was studied in detail. Comparing with the NiL3a, the trinuclear complex Ag(NiL3a)2 nearly has no ability to cleave DNA, whereas Cu(NiL3a)2 is a much better DNA cleavage agent. Cu(NiL3a)2 can efficiently convert supercoiled DNA to nicked DNA with a rate constant of 0.074 ± 0.002 min−1 when 40 μM Cu(NiL3a)2 and 0.6 mM H2O2 are used. The cleavage mechanism between the complex Cu(NiL3a)2 and plasmid DNA is likely to involve singlet oxygen as reactive oxygen species. Circular dichroism (CD) and fluorescence spectroscopy indicate that both Cu(NiL3a)2 and NiL3a bind to DNA by a groove binding mode, and the binding between Cu(NiL3a)2 and DNA is much stronger than that between NiL3a and DNA. The present results may provide some information for the design of efficient multinuclear artificial nucleases.  相似文献   

7.
Dinuclear CuII complexes, [Cu2(salophen)2] ( 1 ) and [Cu2(salen)2] ( 2 ), with Schiff bases derived from salicylaldehyde and o‐phenylenediamine (ophen) or ethylenediamine (en) were synthesized and characterized. They exhibit square‐planar geometry with CuN2O2 coordination, where the dianionic Schiff base acts as a tetradentate N2O2 donor ligand. Calf thymus (CT)‐DNA Binding studies revealed that the complexes possess good binding propensities (Kb=3.13×105 for 1 and Kb=2.99×105 M −1 for 2 ). They show good DNA‐cleavage abilities under oxidative and hydrolytic conditions. Complex 1 binds and cleaves DNA more efficiently as compared to 2 due to the presence of an extended aromatic phenyl ring which might be involved in an additional stacking interaction with DNA bases. From the kinetic experiments, hydrolytic DNA‐cleavage rate constants were determined as 1.54 for 1 and 0.72 h−1 for 2 . The nuclease activities of 1 and 2 are significant, giving rise to (2.03–2.88)×107‐fold rate enhancement compared to non‐catalyzed DNA cleavage.  相似文献   

8.
Phosphorothioate DNA as an antioxidant in bacteria   总被引:1,自引:0,他引:1  
Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H2O2) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance of this redox reaction was investigated by challenging PT DNA hosting Salmonella enterica cells using H2O2. DNA phosphorothioation was found to correlate with increasing resistance to the growth inhibition by H2O2. Resistance to H2O2 was abolished when each of the three dnd genes, required for phosphorothioation, was inactivated. In vivo, PT DNA is more resistant to the double-strand break damage caused by H2O2 than PT-free DNA. Furthermore, sulfur on the modified DNA was consumed and the DNA was converted to PT-free state when the bacteria were incubated with H2O2. These findings are consistent with a hypothesis that phosphorothioation modification endows DNA with reducing chemical property, which protects the hosting bacteria against peroxide, explaining why this modification is maintained by diverse bacteria.  相似文献   

9.
Quercetin has been reported to have carcinogenic effects. However, both quercetin and luteolin have anti-cancer activity. To clarify the mechanism underlying the carcinogenic effects of quercetin, we compared DNA damage occurring during apoptosis induced by quercetin with that occuring during apoptosis induced by luteolin. Both quercetin and luteolin similarly induced DNA cleavage with subsequent DNA ladder formation, characteristics of apoptosis, in HL-60 cells. In HP 100 cells, an H2O2-resistant clone of HL-60 cells, the extent of DNA cleavage and DNA ladder formation induced by quercetin was less than that in HL-60 cells, whereas differences between the two cell types were minimal after treatment with luteolin. In addition, quercetin increased the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in HL-60 cells but not in HP 100 cells. Luteolin did not increase 8-oxodG formation, but inhibited topoisomerase II (topo II) activity of nuclear extract more strongly than quercetin and cleaved DNA by forming a luteolin-topo II-DNA ternary complex. These results suggest that quercetin induces H2O2-mediated DNA damage, resulting in apoptosis or mutations, whereas luteolin induces apoptosis via topo II-mediated DNA cleavage. The H2O2-mediated DNA damage may be related to the carcinogenic effects of quercetin.  相似文献   

10.
Two new mononuclear Mn(II) complexes, Mn(dmbpy)2(OCN)2 (1) and Mn(dmbpy)2(dca)2 (2) (dmbpy = 4,4′-dimethyl-2,2′-bipyridine, dca = dicyanamide), have been synthesized and characterized by IR, elemental analysis, and single crystal X-ray analysis. Both complexes have similar molecular structures. The coordination sphere of the Mn(II) ion in 1 or 2 is a seriously distorted octahedron formed by two dmbpy ligands and two OCN or dca anions in cis positions. For both complexes, the most striking feature is that the mononuclear molecules are linked together by plentiful weak C-H?N hydrogen bonds into a compact 3D supramolecular structure. DNA cleavage studies show that the complexes can promote plasmid DNA cleavage in the presence of H2O2 under physiological conditions, and their cleavage activities are obviously both pH value and complex concentration-dependent. The cleavage mechanism between the complexes and plasmid DNA is likely to involve hydroxyl radicals as reactive oxygen species.  相似文献   

11.
Abstract

When mosses are exposed to increased quantities of ultraviolet (UV) radiation, they produce more secondary metabolites. Antarctica moss Sanionia uncinata (Hedw.) Loeske has presented high carotenoid contents in response to an increase in UVB radiation. This moss has been recommended as a potential source of antioxidants. In the present work, the protective and enhancing effects of aqueous (AE) and hydroalcoholic (HE) extracts of S. uncinata on the cleavage of supercoiled DNA were evaluated through topological modifications, quantified by densitometry after agarose gel electrophoresis. Total phenolic contents reached 5.89 mg/g. Our data demonstrated that the extract does not induce DNA cleavage. Furthermore, both extracts showed antioxidant activity that protected the DNA against cleavage induced by (i) O2??, 89% (AE) and 94% (HE) (P < 0.05), and (ii) .OH, 17% (AE) and 18% (HE). However, the extracts intensified cleavage induced by Fenton-like reactions: (i) Cu2+/H2O2, 94% (AE) and 100% (HE) (P < 0.05), and (ii) SnCl2, 62% (AE) and 56% (HE). DNA damages seem to follow different ways: (i) in the presence of Fenton-like reactions could be via reactive oxygen species generation and (ii) with HE/Cu2+ could have also been triggered by other mechanisms.  相似文献   

12.
Abstract

Apoptosis is an important cell death system that deletes damaged and mutated cells, preventing the induction of cancer. We previously have reported that UV irradiation inhibited the apoptosis induced by serum starvation and cell detachment. This phenomenon is suitable for clarifying the relationship between cancer and the dysregulation of apoptosis by UV irradiation. Here, we have studied the factors responsible for this inhibition of apoptosis, focusing on reactive oxygen species (ROS) and DNA damage. Treatment with xanthine oxidase in the presence of hypoxanthine, which is known to produce superoxide anion (O2??) and hydrogen peroxide (H2O2), inhibited the induction of apoptosis. The xanthine oxidase-induced anti-apoptotic effect was suppressed in the presence of an H2O2-eliminating enzyme, catalase, but not in the presence of an O2??-eliminating enzyme, superoxide dismutase. Treatment with H2O2 itself significantly inhibited the induction of apoptosis. Furthermore, the effect of the inhibition of cell death by UVB irradiation and by H2O2 treatment decreased in H2O2-resistant cells. Although both UVB and H2O2 are known to induce DNA damage, other DNA damaging agents, like γ-irradiation and treatment with cisplatin and bleomycin, showed no inhibition of apoptosis. These findings suggested that H2O2 was essential to the inhibition of apoptosis, in which DNA damage had no role.  相似文献   

13.
Acetylated ferricytochrome c was employed for the detection of superoxide radicals (O2?) generated both in intact cells and in subcellular fractions of leukocytes. Certain saturated fatty acids, myristate in particular, induced the production of O2? in leukocytes, suggesting a correlation between the formation of O2? and the hydrophobic interaction of fatty acids with the leukocyte plasma membrane. As compared with O2? radical generation from phagocytizing leukocytes, a greater stimulation of O2? formation was observed in cells in which myristate was added. The enhanced activity which generated O2? in the cell-free system was located in a particulate fraction but not in the cytosol. The rate of O2? generation in the particulate fraction was higher in the presence of NADPH than in the presence of NADH. The effects of reagents such as KCN, 2,4-dichlorophenol and aminotriazole on the O2? generation in this fraction are examined and the nature of the O2? generating system is discussed.  相似文献   

14.
Chemically and photochemically induced cleavage of DNA by the insulin-mimetic compound NH4[VO(O2)2-(1,10-phenanthroline)], bpV(phen), have been studied.51V NMR and absorption indicate that photoirradiation with low energy UV light of aqueous solutions containing bpV(phen) leads to the conversion of the compound to simple vanadates. Photoillumination of the compound in the presence of supercoiled pBR322 DNA results in cutting of the plasmid to produce nicked circular and linear DNA. Quantitative analysis of agarose gel data shows that bpV(phen) is a single strand nicking agent exhibiting sequence and/or base specificity.  相似文献   

15.
Gossypol, a polyphenolic binaphthyl dialdehyde found in cotton seeds, is a dietary mutagen and a potential male contraceptive. In the presence of Cu(II), gossypol caused breakage of supercoiled plasmid pBR322 DNA. The products were relaxed circles or a mixture of these and linear molecules. Other metal ions tested [Ni(II), Co(II), Mn(II), and Fe(II)] were ineffective or less effective in the DNA breakage reaction. In the case of gossypol-Cu(II) mediated cleavage, (Cu(I) was shown to be an essential intermediate by using the Cud) sequestering reagent bathocuproine. By using job plots, it was established that in the absence of DNA, eight Cu(II) ions can be reduced by one gossypol molecule. The involvement of active oxygen species, such as singlet oxygen and H2O2, was established by the inhibition of DNA breakage by catalase and by sodium azide. It was further shown that gossypol is capable of directly producing H2O2.  相似文献   

16.
The known action of Cu, Zn superoxide dismutase (holo SOD) that converts O2 to O2 and H2O2 plays a crucial role in protecting cells from toxicity of oxidative stress. However, the overproduction of holo SOD does not result in increased protection but rather creates a variety of unfavorable effects, suggesting that too much holo SOD may be injurious to the cells. In the in vitro study, we report a finding that the holo SOD from bovine erythrocytes and its apo form possess a divalent-metal-dependent nucleolytic activity, which was confirmed by UV–vis absorption titration of calf thymus DNA (ctDNA) with the holo SOD, quenching of holo SOD intrinsic fluorescence by ctDNA, and by gel electrophoresis monitoring conversion of DNA from the supercoiled DNA to nicked and linear forms, and fragmentation of a linear λDNA. Moreover, the DNA cleavage activity was examined in detail under certain reaction conditions. The steady-state study indicates that DNA cleavage supported by both forms of SOD obeys Michaelis–Menten kinetics. On the other hand, the assays with some other proteins indicate that this new function is specific to some proteins including the holo SOD. Therefore, this study reveals that the divalent-metal-dependent DNA cleavage activity is an intrinsic property of the holo SOD, which is independent of its natural metal (copper and zinc) sites, and may provide an alternative insight into the link between SOD enzymes and neurodegenerative disorders.  相似文献   

17.
The cobalt(II) tetracarboxyphthalocyanine-deoxyribonucleotide pd(TCTTCCCA) conjugate was synthesized. The phthalocyanineN-succinimide ester prepared from phthalocyanine using DCC was mixed in DMF with an aqueous solution of the oligonucleotide bearing a 1,3-diaminopropane linker at the 5′-phosphate. The resulting conjugate was tested in the intraduplex reaction with target 14-mer and 22-mer oligonucleotides containing conjugate-complementary sequences. In the presence of O2 and a thiol (2-mercaptoethanol or DTT), as a coupled reducer, or H2O2, sequence-specific DNA modification was observed that caused the cleavage of the target upon treatment with piperidine. This article is dedicated to the 25th Anniversary of the journal Bioorganicheskaya Khimiya  相似文献   

18.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage.  相似文献   

19.
Calothrixin A is a bioactive metabolite of the cyanobacterium Calothrix and has been shown to be active at nanomolar concentrations against human HeLa cancer cells. It induces apoptotic killing of human Jurkat cancer cells in a time- and concentration-dependent manner, as revealed by flow cytometry, morphological evidence from electron microscopy and DNA fragmentation. It also causes G2/M cell cycle arrest, which is indicative of intracellular DNA damage. It was shown to be redox-active, as measured by oxygen uptake in the presence of dithiothreitol, and caused cleavage of plasmid DNA, as revealed by electrophoresis. This cleavage was blocked by the H2O2 scavenger catalase, but not by other scavengers of reactive oxygen species (ROS). Calothrixin A appeared to induce intracellular formation of ROS as measured by fluorescence of dichlorodihydrofluorescein diacetate. Conditions were not found, however, under which the calothrixin A-induced apoptosis could be reversed by the scavengers, or by the metal chelator desferal. Menadione was compared with calothrixin A. The IC50 at which this compound caused apoptosis was significantly higher. It also induced cell cycle arrest at higher concentrations, although caused plasmid DNA cleavage at lower concentrations. It is postulated that the greater effectiveness of calothrixin A in killing cells is related to its ring structure, which has the characteristics of a DNA intercalator, thereby localizing its quinone-dependent effects.  相似文献   

20.
Oxidative cleavage of poly(cis-1,4-isoprene) by rubber oxygenase RoxA purified from Xanthomonas sp. was investigated in the presence of different combinations of 16O2, 18O2, H216O, and H218O. 12-Oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD; m/z 236) was the main cleavage product in the absence of 18O-compounds. Incorporation of one 18O atom in ODTD was found if the cleavage reaction was performed in the presence of 18O2 and H216O. Incubation of poly(cis-1,4-isoprene) (with RoxA) or of isolated unlabeled ODTD (without RoxA) with H218O in the presence of 16O2 indicated that the carbonyl oxygen atoms of ODTD significantly exchanged with oxygen atoms derived from water. The isotope exchange was avoided by simultaneous enzymatic reduction of both carbonyl functions of ODTD to the corresponding dialcohol (12-hydroxy-4,8-dimethyl-trideca-4,8-diene-1-ol (HDTD; m/z 240) during RoxA-mediated in vitro cleavage of poly(cis-1,4-isoprene). In the presence of 18O2, H216O, and alcohol dehydrogenase/NADH, incorporation of two atoms of 18O into the reduced metabolite HDTD was found (m/z 244), revealing that RoxA cleaves rubber by a dioxygenase mechanism. Based on the labeling results and the presence of two hemes in RoxA, a model of the enzymatic cleavage mechanism of poly(cis-1,4-isoprene) is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号