首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lactoferrin (LF) is an iron-binding glycoprotein found predominantly in milk and in granulocytes. LF is extremely polyfunctional protein some biological functions of which are determined by its capacity to bind iron, but many other functions are iron-independent. In this article we show for the first time that LF interacts with a number of various mononucleotides.  相似文献   

3.
Lactoferrin (LF) is an 80-kDa globular glycoprotein with high affinity for metal ions, particularly for iron. This protein possesses many biological functions, including the binding and release of iron and serves as one of the important components of the innate immune system, where it acts as a potent inhibitor of several pathogens. LF has efficacious antibacterial and antiviral activities against a wide range of Gram-positive and Gram-negative bacteria and against both naked and enveloped DNA and RNA viruses. In its antiviral pursuit, LF acts predominantly at the acute phase of the viral infection or even at the intracellular stage, as in hepatitis C virus infection. LF inhibits the entry of viral particles into host cells, either by direct attachment to the viral particles or by blocking their cellular receptors. This wide range of activities may be attributed to the capacity of LF to bind iron and its ability to interfere with the cellular receptors of both hosts and pathogenic microbes.  相似文献   

4.
The transferrin family of non-heme iron binding glycoproteins are believed to play a central role in iron metabolism and have been implicated in iron transport, cellular iron delivery and control of the level of free iron in external secretions. Lactoferrin (LF) is a member of this family that is widely localized in external fluids including milk and mucosal secretions, in addition to being a prominent component of the secondary granules of neutrophils. Although structurally related to transferrin, LF appears to have a broader functional role mediated by both iron dependent and iron independent mechanisms. In this review, we will focus on our current understanding on the role of LF in regulating iron homeostasis and its role in host protection against microbial infection at the mucosal surface. In addition, recent insights obtained from analyzing the phenotypic consequences of LF ablation in lactoferrin knockout mice (LFKO), which challenge the long held dogma that LF is required for intestinal iron absorption in the neonate, are summarized.  相似文献   

5.
The present experiment was carried out to investigate the effects of different levels of dietary lactoferrin (LF) on growth performance, physiological status, iron absorption and innate immune response of juvenile Siberian sturgeon Acipenser baeri. Fish were fed with six different rations including 0, 100, 200, 400, 800 and 1600 mg LF kg(-1) diet for 8 weeks. At the end of the experiment, samples were collected for estimating the physiological and immunological parameters. Dietary LF did not change the fish growth performance, hematological parameters, serum proteins or hepatic enzymes. Moreover, stress indicators (plasma cortisol, glucose and lactate) were not affected by dietary LF. The iron absorption of fish was considerably affected by LF; thus, plasma iron in LF-treatments greatly declined and the total iron binding capacity (TIBC) significantly increased in fish fed with 800 mg LF kg(-1). In addition, the liver iron content markedly increased in some LF-treatments, but the variation of muscle iron concentration in treatments was insignificant. The amount of mucus secretion and serum bactericidal activity rose in fish fed on dietary LF, although other non-specific immune responses such as mucus bactericidal activity, serum and mucus lysozyme activity, serum peroxidase, serum natural hemolytic complement activity and serum IgM were not influenced by LF. This study revealed the ability of dietary LF to sequester iron, which is an essential nutrient required for the growth of bacteria. LF was also shown to improve some physiological and immunological parameters of Siberian sturgeon, to some extent.  相似文献   

6.
Transferrin (TF) and lactoferrin (LF) are probably the major sources of iron (Fe) for Neisseria gonorrhoeae in vivo. We isolated mutants of N. gonorrhoeae FA19 that were unable to grow with Fe bound to either TF (TF-) or LF (LF-) or to both TF and LF ([TF LF]-). The amount of Fe internalized by each of the mutants was reduced to background levels from the relevant iron source(s). The wild-type parent strain exhibited saturable specific binding of TF and LF; receptor activity was induced by Fe starvation. The TF(-)-specific or LF(-)-specific mutants were almost completely lacking in receptor activity for TF or LF, respectively, whereas the [TF LF]- mutants bound both TF and LF as well as the wild-type strain. All mutants utilized citrate and heme normally as Fe sources. These results demonstrate that ability to bind TF or LF is essential for gonococci to scavenge appreciable amounts of Fe from these sources in vitro. In addition, the TF and LF Fe acquisition pathways are linked by the mutual use of a nonreceptor gene product that is essential to Fe scavenging from both of these sources; this gene product is not required for Fe acquisition from other sources.  相似文献   

7.
This study investigated whether intake of lactoferrin (LF) would improve or prevent anemia in female long distance runners who were training during the summer season and had a high risk of iron-deficiency anemia. Sixteen female long distance runners were divided into a group taking LF and iron (the LF group) and a group that only took iron (the control group) for 8 weeks. In the control group, the ferritin, serum iron, and red blood cell count were significantly lower than before treatment. In the LF group, the hematology data showed no significant change during the 8 weeks. The red blood cell count was significantly higher in the LF group than in the control group. The blood lactate level following a 3,000-m pace run of the control group was also significantly higher than that of the LF group. These observations suggest the possibility that intake of LF increases the absorption and utilization of iron and would be useful in the prevention of iron deficiency anemia among female long distance runners.  相似文献   

8.
Several investigators have now confirmed our original report demonstrating the myelopoietic suppressive activity of lactoferrin (LF) in vitro. In order to further clarify this activity, we used the recently produced and purified neutralizing antibody (II 2C) to LF to set up an immunoradiometric assay specific for LF and to affinity purify LF from lysates of peripheral blood polymorphonuclear neutrophils (PMN) obtained from healthy donors. Iron-saturated purified PMN LF was as active as iron-saturated affinity purified milk LF as a suppressor of the release of granulocyte-macrophage colony stimulating factors (GM-CSF) from mononuclear human peripheral blood leukocytes. The activities of both the PMN LF and milk LF were inactivated by preincubation with monoclonal anti-LF antibody (II 2C). In order to evaluate the methods of iron saturation of LF in vitro as measures of their functional activities, milk LF was iron saturated by four different methods, including ferric citrate, ferric ammonium sulphate, ferric chloride with nitriloacetate, and ferric chloride alone. The functional characteristics of all four preparations of LF saturated with iron in vitro were relatively equal and were more active than native LF. Resident mouse peritoneal macrophages separated into subpopulations of GM-CSF-producing cells by velocity sedimentation were evaluated for their LF-receptor binding capacity and for sensitivity to the suppression of GM-CSF release by LF. Iron saturated LF suppressed release of GM-CSF from only those fractions containing LF-receptor bearing cells, although not all fractions containing cells bearing receptors for LF responded to the suppressive activity of LF. These studies provide further evidence for the myelopoietic regulatory activity in vitro of PMN-derived LF, which is mediated through populations of mononuclear phagocytes having receptors for LF.  相似文献   

9.
10.
The general principles of recognition of nucleic acids by proteins are among the most exciting problems of molecular biology. Human lactoferrin (LF) is a remarkable protein possessing many independent biological functions, including interaction with DNA. In human milk, LF is a major DNase featuring two DNA‐binding sites with different affinities for DNA. The mechanism of DNA recognition by LF was studied here for the first time. Electrophoretic mobility shift assay and fluorescence measurements were used to probe for interactions of the high‐affinity DNA‐binding site of LF with a series of model‐specific and nonspecific DNA ligands, and the structural determinants of DNA recognition by LF were characterized quantitatively. The minimal ligands for this binding site were orthophosphate (Ki = 5 mM), deoxyribose 5'‐phosphate (Ki = 3 mM), and different dNMPs (Ki = 0.56–1.6 mM). LF interacted additionally with 9–12 nucleotides or nucleotide pairs of single‐ and double‐stranded ribo‐ and deoxyribooligonucleotides of different lengths and sequences, mainly through weak additive contacts with internucleoside phosphate groups. Such nonspecific interactions of LF with noncognate single‐ and double‐stranded d(pN)10 provided ~6 to ~7.5 orders of magnitude of the enzyme affinity for any DNA. This corresponds to the Gibbs free energy of binding (ΔG0) of ?8.5 to ?10.0 kcal/mol. Formation of specific contacts between the LF and its cognate DNA results in an increase of the DNA affinity for the enzyme by approximately 1 order of magnitude (Kd = 10 nM; ΔG0 ≈ ?11.1 kcal/mol). A general function for the LF affinity for nonspecific d(pN)n of different sequences and lengths was obtained, giving the Kd values comparable with the experimentally measured ones. A thermodynamic model was constructed to describe the interactions of LF with DNA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Lactoferrin (LF) has been recently proposed as a physiologic regulator of the granulocyte monocyte progenitor (CFU-GM). This glycoprotein, when saturated with iron, has been said to limit CFU-GM growth by decreasing production and release of colony stimulating activity (CSA) by monocytes and macrophages. Human milk LF saturated with iron, at concentrations ranging from 10(-18) to 10(-8) M was added either to endogenously stimulated bone marrow cells or to mononucleated cells used as feeder layers for adherent cell-depleted marrow. Irrespective of the concentration of LF within the culture system used, no significant inhibition of CFU-GM growth was observed. Moreover, the CFU-GM stimulating activity of medium conditioned by a 4-day incubation of 1 X 10(6) mononucleated blood cells in the presence or in the absence of LF was the same. Various possible explanations for not confirming the reported inhibiting activity of iron saturated LF were explored: 1) masking inhibition of the system by prostaglandin E2 (PGE2), 2) masking inhibition of the system by bovine LF still detectable in the fetal calf serum after heating, 3) preinhibition of the system by leukemic-associated inhibitory activity (LIA) possibly present in the culture system, 4) the iron and calcium content of the culture medium used, 5) the fixation of LF to plastic compounds, 6) the source of the human LF used, 7) the marrow cell separation methods used. None of these factors was shown to play a role in vitro in the activity of LF and thus no evidence was found for a significant role of LF in the regulation of CSA production by monocytes. Peripheral blood human monocytes isolated by elutriation and incubated in albumin free medium in the presence of either 125I-LF or colloidal gold-labeled LF showed no LF binding.  相似文献   

12.
13.
PurposeDiets rich in fat and energy are associated with metabolic syndrome (MS). Increased body iron stores have been recognized as a feature of MS. High-fat diets (HFs), excess iron loading and MS are closely associated, but the mechanism linking them has not been clearly defined. We investigated the interaction between dietary fat and dietary Fe in the context of glucose and lipid metabolism in the body.MethodsC57BL6/J mice were divided into four groups and fed the modified AIN-93G low-fat diet (LF) and HF with adequate or excess Fe for 7 weeks. The Fe contents were increased by adding carbonyl iron (2% of diet weight) (LF+Fe and HF+Fe).ResultsHigh iron levels increased blood glucose levels but decreased high-density lipoprotein cholesterol levels. The HF group showed increases in plasma levels of glucose and insulin and insulin resistance. HF+Fe mice showed greater changes. Representative indices of iron status, such hepatic and plasma Fe levels, were not altered further by the HF. However, both the HF and excess iron loading changed the hepatic expression of hepcidin and ferroportin. The LF+Fe, HF and HF+Fe groups showed greater hepatic fat accumulation compared with the LF group. These changes were paralleled by alterations in the levels of enzymes related to hepatic gluconeogenesis and lipid synthesis, which could be due to increases in mitochondrial dysfunction and oxidative stress.ConclusionsHigh-fat diets and iron overload are associated with insulin resistance, modified hepatic lipid and iron metabolism and increased mitochondrial dysfunction and oxidative stress.  相似文献   

14.
Lactoferrin (LF) is an iron-binding glycoprotein that possesses multifunctional biological activities. Recent reports from clinical trials suggest that LF is potentially effective as a therapeutic protein against cancer and gangrene. However, pharmaceutical proteins such as LF are unstable in vivo. Therefore, to improve stability, we developed mono-PEGylated bovine LF (20k-PEG-bLf) with branched 20 kDa (2 x 10 kDa) poly(ethylene glycol) (PEG). We examined in vitro activities such as iron binding, IL-6 cell based assay, and resistance to a proteolytic enzyme in artificial gastric fluid. The 20k-PEG-bLf protein was fully active in iron binding and exhibited 69.6 +/- 2.9% (mean +/- S.E., n = 6) of the original anti-inflammatory activity. The proteolytic half-life increased 2-fold over that of unmodified LF. In vivo pharmacokinetic analyses were performed to examine absorption from the intestinal epithelium and serum clearance. Direct administration of 20k-PEG-bLf (30 mg/kg) into rat stomachs demonstrated that the amount of absorption from the intestinal tract increased approximately 10-fold relative to unmodified LF. Intravenous injection of the protein (1 mg/kg) revealed that 20k-PEG-bLf prolongs serum half-life by approximately 5.4-fold, and that the area under the curve (AUC) was increased approximately 9.2-fold compared to that of unmodified LF. PEGylation improved the physical and pharmacokinetic properties of bovine LF. This is the first report on the use of bioconjugation of LF for the development of a promising oral pharmaceutical agent.  相似文献   

15.
The anthrax toxin of the bacterium Bacillus anthracis consists of three distinct proteins, one of which is the anthrax lethal factor (LF). LF is a gluzincin Zn‐dependent, highly specific metalloprotease with a molecular mass of ~90 kDa that cleaves most isoforms of the family of mitogen‐activated protein kinase kinases (MEKs/MKKs) close to their amino termini, resulting in the inhibition of one or more signaling pathways. Previous studies on the crystal structures of uncomplexed LF and LF complexed with the substrate MEK2 or a MKK‐based synthetic peptide provided structure‐activity correlations and the basis for the rational design of efficient inhibitors. However, in the crystallographic structures, the substrate peptide was not properly oriented in the active site because of the absence of the catalytic zinc atom. In the current study, docking and molecular dynamics calculations were employed to examine the LF‐MEK/MKK interaction along the catalytic channel up to a distance of 20 Å from the zinc atom. This residue‐specific view of the enzyme‐substrate interaction provides valuable information about: (i) the substrate selectivity of LF and its inactivation of MEKs/MKKs (an issue highly important not only to anthrax infection but also to the pathogenesis of cancer), and (ii) the discovery of new, previously unexploited, hot‐spots of the LF catalytic channel that are important in the enzyme/substrate binding and interaction.  相似文献   

16.
The peptidoglycan (PGN)‐recognition protein LF (PGRP‐LF) is a specific negative regulator of the immune deficiency (Imd) pathway in Drosophila. We determine the crystal structure of the two PGRP domains constituting the ectodomain of PGRP‐LF at 1.72 and 1.94 Å resolution. The structures show that the LFz and LFw domains do not have a PGN‐docking groove that is found in other PGRP domains, and they cannot directly interact with PGN, as confirmed by biochemical‐binding assays. By using surface plasmon resonance analysis, we show that the PGRP‐LF ectodomain interacts with the PGRP‐LCx ectodomain in the absence and presence of tracheal cytotoxin. Our results suggest a mechanism for downregulation of the Imd pathway on the basis of the competition between PRGP‐LCa and PGRP‐LF to bind to PGRP‐LCx.  相似文献   

17.
《Autophagy》2013,9(4):494-501
Normal retinal pigment epithelial (RPE) cells are postmitotic, long-lived and basically not replaced. Daily, they phagocytose substantial amounts of lipid-rich material (photoreceptor outer segment discs), and they do so in the most oxygenated part of the body – the retina. One would imagine that this state of affairs should be associated with a rapid formation of the age pigment lipofuscin (LF). However, LF accumulation is slow and reaches significant amounts only late in life when, if substantial, it often coincides with or causes age-related macular degeneration. LF formation occurs inside the lysosomal compartment as a result of iron-catalyzed peroxidation and polymerization. This process requires phagocytosed or autophagocytosed material under degradation, but also the presence of redox-active low mass iron and hydrogen peroxide. To gain some information on how RPE cells are able to evade LF formation, we investigated the response of immortalized human RPE cells (ARPE-19) to oxidative stress with/without the protection of a strong iron-chelator. The cells were found to be extremely resistant to hydrogen peroxide-induced lysosomal rupture and ensuing cell death. This marked resistance to oxidative stress was not explained by enhanced degradation of hydrogen peroxide, but to a certain extent further increased by the potent lipophilic iron chelator SIH. The cells were also able to survive, and even replicate, at high concentrations of SIH and showed a high degree of basal autophagic flux. We hypothesize that RPE cells have a highly developed capacity to keep lysosomal iron in a non-redox-active form, perhaps by pronounced autophagy of iron-binding proteins in combination with an ability to rapidly relocate low mass iron from the lysosomal compartment.  相似文献   

18.
19.
Assessing the landscape as a whole is an important step towards the understanding the landscape’s functionality and, consequently, identifying areas with different levels of ecosystem functions (EF)/landscape functions (LF) and services (ES). The main aim of this paper is present a framework to map LF considering the landscape approach. Our study case was a watershed located in the mountain region of Rio de Janeiro state. To achieve the goal, we defined landscape units and ecosystem functions. Based on it, a correlation matrix was produced and sent to experts for consultation. Then, we map the potential of landscape units to provide EF. The result showed that, of 23 landscape units, six units had relevance for habitat, information and regulation functions; five showed potential to perform production and regulation functions, one unit showed potential to perform habitat maintenance and information functions. Seven units showed relevance for only one function category. This study highlights how multifunctional a landscape can be. It was evident that different landscape components are able to provide a wild range of EF. Moreover, this represent a high capacity to propose sustainable alternatives for landscapes—knowing the landscape unit potential to provide LF it is possible to indicate the best options for its use and potentialize the LF provision. It was evident that well managed landscapes are also capable to provide LF.  相似文献   

20.
Lactoferrin (LF) and transferrin (TF) are postulated to be important physiological sources of iron for Neisseria gonorrhoeae. A dot binding assay involving the use of gonococcal total membranes derived from cells grown in iron-limited conditions demonstrated the presence of separate receptors for LF and TF. The ligand and functional specificities of these receptors were examined in competition-binding and growth experiments. The results indicate that the LF and TF receptors are highly specific for the human protein, suggesting that this property may be partially responsible for conferring the human host specificity of N. gonorrhoeae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号