首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
The synthesis of cyclohexadiene and maleimide derivatives and their use for the functionalization of oligonucleotides and the coating of glass surfaces is reported. A method for the covalent attachment of diene or maleimide modified oligonucleotides to the coated glass surfaces via aqueous Diels-Alder reactions is presented.  相似文献   

2.
Abstract

The preparation is described of four 2-cyanoethyl-N,N-diisopropyl phosphoramidites of N-α-Fmoc-S-protected cysteine hydroxyalkyl amides. The phosphoramidites were used in solid-phase synthesis of 5′-cysteinyl oligonucleotides, useful intermediates in the preparation of peptide-oligonucleotide conjugates through reaction with a maleimide peptide or with a peptide thioester via “native ligation”.  相似文献   

3.
An efficient heterobifunctional reagent, N-(3-triethoxysilylpropyl)-4-(N'-maleimidylmethyl) cyclohexanamide (TPMC), was developed for the immobilization of thiol-modified oligonucleotides on an unmodified glass surface. The heterobifunctionality of the reagent was used for the construction of a DNA microarray in which the triethoxysilyl functionality has specificity toward a glass surface, whereas the maleimide functionality has thiol-modified oligonucleotides via a stable thioether linkage. Immobilization of DNA was achieved by two alternative approaches. In the first approach, the reagent TPMC was treated with oligonucleotides to get triethoxysilyl-oligonucleotide conjugate, which was then covalently attached via specific triethoxysilyl functionality to an unmodified glass surface. In the second approach, the reagent was first covalently linked with an unmodified glass surface to get maleimide functionality on a glass surface, which was then used for the immobilization of oligonucleotides via a stable thioether linkage. The applicability of the reagent was explored by hybridization studies with the fluorescein-labeled complementary DNA strand and in mismatch discrimination.  相似文献   

4.
A new heterobifunctional reagent, namely, N-(3-triethoxysilylpropyl)-4-(N'-maleimidylmethyl)cyclohexanamide (TPMC) was developed and its potentiality for fixing of thiol (-SH) modified oligonucleotides were tested. The covalent attachment of oligonucleotides with the reagent was achieved through its maleimide functionality at one end via stable thioether linkage while the other end bearing triethoxysilyl functionality has been utilized for coupling with the virgin glass surface with simplified methodologies. Immobilization of oligonucleotides was achieved by two alternating ways. The PATH-1 involves formation of conjugate of reagent and SH-modified oligonucleotides through thioether linkage and was subsequently immobilized on unmodified glass surface through triethoxysilyl group and alternatively, PATH-2 involves reaction of reagent first with unmodified glass surface to get maleimide functionality on the surface and then the SH-modified oligonucleotides were immobilized via thioether linkage. The specificity of immobilization was tested by hybridization study with complementary fluorescein labeled oligonucleotide strand.  相似文献   

5.
LeProust E  Zhang H  Yu P  Zhou X  Gao X 《Nucleic acids research》2001,29(10):2171-2180
Achieving high fidelity chemical synthesis on glass plates has become increasingly important, since glass plates are substrates widely used for miniaturized chemical and biochemical reactions and analyses. DNA chips can be directly prepared by synthesizing oligonucleotides on glass plates, but the characterization of these micro-syntheses has been limited by the sub-picomolar amount of material available. Most DNA chip syntheses have been assayed using in situ coupling of fluorescent molecules to the 5′-OH of the synthesized oligonucleotides. We herein report a systematic investigation of oligonucleotide synthesis on glass plates with the reactions carried out in an automated DNA synthesizer using standard phosphoramidite chemistry. The analyses were performed using 32P gel electrophoresis of the oligonucleotides cleaved from glass plates to provide product distribution profiles according to chain length of oligonucleotides. 5′-Methoxythymidine was used as the chain terminator, which permits assay of coupling reaction yields as a function of chain length growth. The results of this work reveal that a major cause of lower fidelity synthesis on glass plates is particularly inefficient reactions of the various reagents with functional groups close to glass plate surfaces. These problems cannot be detected by previous in situ fluorescence assays. The identification of this origin of low fidelity synthesis on glass plates should help to achieve improved synthesis for high quality oligonucleotide microarrays.  相似文献   

6.
Abstract

By incorporating a “capping step” at the start of an oligonucleotide synthesis (“pre-cap”) and following a “SUP” work-up protocol with ammonium hydroxide, an overall improvement is observed in the quality of oligonucleotides synthesized on a large scale on controlled pore glass support (CPG). Rationalization of these results is provided.  相似文献   

7.
Abstract

Synthesis of pyrazolo[3,4-c]maleimide nucleosides was attempted, but ring opening reaction of the maleimide part was observed during ammonolysis of sugar-protected pyrazolo[3,4-c]maleimide nucleosides. The isolated pyrazole nucleosides were characterized by NMR spectra and X-ray analysis.  相似文献   

8.
Near-infrared (near-IR) excitation produces little background signal from biological molecules, making near-IR fluorescence technology highly useful in proteomic and genomic applications. To increase the emissions of near-IR fluorophores, we examined the use of metal-enhanced fluorescence on these longer wavelength dyes. IRDye®700- and IRDye®800-labeled DNA oligonucleotides and proteins were spotted onto silver island film (SIF)-coated glass slides, and analyzed using a LI-COR Odyssey® IR imaging system. We observed more than 18-fold enhancement of the IRDye®700 and 15-fold enhancement of the IRDye®800-labeled DNA oligonucleotides when spotted on SIF-coated surfaces compared with uncoated surfaces. We also demonstrated that the enhanced emissions produced on the SIF-coated slides remained linear over several orders of magnitude, that the emissions remained reproducible across a slide surface, and that the SIF-coated slide remained effective at enhancing emissions after 9 months of storage. Our results indicate that SIF-coated glass slides are effective at enhancing near-IR fluorescence and could be developed into an effective tool to aid in molecular biological applications.  相似文献   

9.
The present work reports on the preparation of glass surfaces coated with NPPOC-protected aminooxy groups and their use for the patterning of oligonucleotides on glass slides and in capillary tubes. The method involves the use of surfaces coated with amino groups using (gamma-aminopropyl)triethoxy silane and subsequent grafting of the aminooxy groups by using the activated ester 1. The NPPOC-protected aminooxy groups on the surfaces can be cleaved upon irradiation. The free aminooxy groups so obtained are subsequently reacted with aldehyde-containing oligonucleotides to achieve efficient surface patterning.  相似文献   

10.

This study has investigated the relationship between bacterial biofilms and the attachment of zoospores of the green macroalga Enteromorpha. Zoospore attachment to glass slides was enhanced in the presence of a bacterial biofilm assemblage, and the number attaching increased with the number of bacteria present. Zoospores also attached to control surfaces, but at lower numbers; glass surfaces conditioned in autoclaved seawater had the same number of zoospores attached as new glass surfaces. The spatial relationship between bacterial cells and attached zoospores was quantified by image analysis. The hypothesis tested was that zoospores attached preferentially to, or in the very close vicinity of, bacterial cells. Spatial microscopic analysis showed that more bacteria were covered by zoospores than would be expected if zoospore attachment was a random process and zoospores appeared to attach to bacterial clusters. The most likely explanation is that zoospores are attracted to bacterial cells growing on surfaces and the presence of a bacterial biofilm enhances their settlement. The possibility is discussed that Enteromorpha zoospores respond to a chemical signal produced by bacteria, i.e. that there may be prokaryote‐eukaryote cell signalling.  相似文献   

11.
Silanized nucleic acids: a general platform for DNA immobilization   总被引:1,自引:0,他引:1  
We have developed a method for simultaneous deposition and covalent cross-linking of oligonucleotide or PCR products on unmodified glass surfaces. By covalently conjugating an active silyl moiety onto oligonucleotides or cDNA in solutions we have generated a new class of modified nucleic acids, namely silanized nucleic acids. Such silanized molecules can be immobilized instantly onto glass surfaces after manual or automated deposition. This method provides a simple and rapid, yet very efficient, solution to the immobilization of prefabricated oligonucleotides and DNA for chip production.  相似文献   

12.
The covalent attachment of DNA oligonucleotides onto crystalline silicon (100) surfaces, in patterns with submicron features, in a straightforward, two-step process is presented. UV light exposure of a hydrogen-terminated silicon (100) surface coated with alkenes functionalized with N-hydroxysuccinimide ester groups resulted in the covalent attachment of the alkene as a monolayer on the surface. Submicron-scale patterning of surfaces was achieved by illumination with an interference pattern obtained by the transmission of 248 nm excimer laser light through a phase mask. The N-hydroxysuccinimide ester surface acted as a template for the subsequent covalent attachment of aminohexyl-modified DNA oligonucleotides. Oligonucleotide patterns, with feature sizes of 500 nm, were reliably produced over large areas. The patterned surfaces were characterized with atomic force microscopy, scanning electron microscopy, epifluorescence microscopy and ellipsometry. Complementary oligonucleotides were hybridized to the surface-attached oligonucleotides with a density of 7 × 1012 DNA oligonucleotides per square centimetre. The method will offer much potential for the creation of nano- and micro-scale DNA biosensor devices in silicon.  相似文献   

13.
Abstract

The synthesis of Fpmp-protected α-hydroxybenzylphosphonate modified oligonucleotides as potential new pro-oligonucleotides is described. The proposed hydrolytic pathways of the oligonucleotides were studied using two dimers 2 and 4 and the tetramer 6 containing one α-hydroxybenzyl modification as model compounds.  相似文献   

14.
An amino acid possessing a maleimide side chain was developed and synthesized in good yield. With a propensity to undergo the Michael addition reaction, the creation of a maleimide amino acid derivative was targeted for use as a highly functional tool for enabling peptide conjugation and structural modifications. After addressing the inherent potential side reactions of maleimides during solid phase peptide synthesis, the ability to incorporate the maleimide amino acid in an RGDS peptide sequence was demonstrated. 1H NMR and mass spectroscopic techniques enabled thorough characterization of the peptide sequence, confirming the presence of the maleimide functionality. Once characterized, the ability to use the maleimide moiety as a peptide modification tool was investigated. Specifically, it was shown that the maleimide functional group could be exploited, given the proper reaction conditions, to anchor a peptide to a surface and create a cyclic conformation from a linear sequence. Furthermore, bioactivity of the peptide containing maleimide amino acid was evaluated by studying cellular interactions with surfaces functionalized with an integrin binding sequence.  相似文献   

15.
ABSTRACT

In this report we describe two robust procedures for oligonucleotide microarray preparation based on polymeric coatings. The proposed chemical approaches include: 1) a glass functionalisation step with appropriate silanes (γ-aminopropyltriethoxysilane-APTES or 3-glycid-oxypropyltrimethoxysilane-GOPS), 2) a coating step using polymers (poly-L-Lysine or poly(acrylic acid-co-acrylamide) copolymer) covalently bound to the modified glass and 3) a surface activation step to allow for the attachment of amino-modified oligonucleotides. Results obtained using these chemistries in oligo microarray preparation show: 1) an overall high loading capacity and availability to hybridisation against targets, 2) a good uniformity, 3) resistance to consecutive probing/stripping cycles, 4) stability to thermal cycles, 5) effectiveness in hybridisation-mediated mutation detection procedures and 6) the possibility to perform enzymatic reactions, such as ligation.  相似文献   

16.
Phosphorothioate diester oligonucleotides proved to be fully compatible with maleimides in the context of two different conjugation reactions: (a) reaction of (5')diene-[phosphorothioate oligonucleotides] with maleimido-containing compounds to afford the Diels-Alder cycloadduct; (b) conjugation of (5')maleimido-[phosphorothioate oligonucleotides] with thiol-containing compounds. No evidence of reaction between phosphorothioate diesters and maleimides was found in any of these processes. Importantly, in the preparation of (5')maleimido-[phosphorothioate oligonucleotides] from [protected maleimido]-[phosphorothioate oligonucleotides], which requires the maleimide to be deprotected by retro-Diels-Alder reaction (heating for 3-4 h in toluene at 90 °C), no addition of phosphorothioate diester to the maleimide was found either. Finally, maleimide-[phosphorothioate monoester] conjugation was also explored for comparison purposes.  相似文献   

17.
A rapid method for construction of oligonucleotide arrays on a glass surface, using a novel heterobifunctional reagent, N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)-triethoxysilylpropyl-3-amine (NTMTA), has been described. The heterobifunctional reagent, NTMTA, carries two different thermoreactive groups. The triethoxysilyl group on one end is specific towards silanol functions on the virgin glass surface, while the trifluoroethanesulfonyl (tresyl) group on the other end of the reagent reacts specifically with aminoalkyl- or mercaptoalkyl- functionalized oligonucleotides. Immobilization of oligonucleotides on a glass surface has been realized via two routes. In the first one (A), 5′- aminoalkyl- or mercaptoalkyl-functionalized oligonucleotides were allowed to react with NTMTA to form a oligonucleotide-triethoxysilyl conjugate which, in a subsequent reaction with unmodified (virgin) glass microslide, results in surface-bound oligonucleotides. In the second route (B), the NTMTA reagent reacts first with a glass microslide whereby it generates trifluoroethanesulfonate ester functions on it, which in a subsequent step react with 5′-aminoalkyl or mercaptoalkyl oligonucleotides to generate support-bound oligonucleotides. Subsequently, the oligonucleotide arrays prepared by both routes were analyzed by hybridization experiments with complementary oligonucleotides. The constructed microarrays were successfully used in single and multiple nucleotide mismatch detection by hybridizing these with fluorescein-labeled complementary oligonucleotides. Further more, the proposed method was compared with the existing methods with respect to immobilization efficiency of oligonucleotides.  相似文献   

18.
DNA microarrays with PAMAM dendritic linker systems   总被引:6,自引:4,他引:2       下载免费PDF全文
The DNA microarray-based analysis of single nucleotide polymorphisms (SNPs) is important for the correlation of genetic variations and individual phenotypes, and for locating disease-causing genes. To facilitate the development of surfaces suitable for immobilization of oligonucleotides, we report here a novel method for the surface immobilization of DNA using pre-fabricated polyamidoamine (PAMAM) starburst dendrimers as mediator moieties. Dendrimers containing 64 primary amino groups in their outer sphere are covalently attached to silylated glass supports and, subsequently, the dendritic macromolecules are modified with glutaric anhydride and activated with N-hydroxysuccinimide. As a result of the dendritic PAMAM linker system the surfaces reveal both a very high immobilization efficiency for amino-modified DNA-oligomers, and also a remarkable high stability during repeated regeneration and re-using cycles. The performance of dendrimer-based DNA microarrays in the discrimination of SNPs is demonstrated.  相似文献   

19.
Abstract

Reaction of abasic site-containing oligonucleotides with an oxyamino fluorescent label is described. The reaction represents an efficient method to functionalize oligonucleotides at preselected positions.  相似文献   

20.
A recently described reaction for the UV-mediated attachment of alkenes to silicon surfaces is utilized as the basis for the preparation of functionalized silicon surfaces. UV light mediates the reaction of t-butyloxycarbonyl (t-BOC) protected ω-unsaturated aminoalkane (10-aminodec-1-ene) with hydrogen-terminated silicon (001). Removal of the t-BOC protecting group yields an aminodecane-modified silicon surface. The resultant amino groups can be coupled to thiol-modified oligodeoxyribonucleotides using a heterobifunctional crosslinker, permitting the preparation of DNA arrays. Two methods for controlling the surface density of oligodeoxyribonucleotides were explored: in the first, binary mixtures of 10-aminodec-1-ene and dodecene were utilized in the initial UV-mediated coupling reaction; a linear relationship was found between the mole fraction of aminodecene and the density of DNA hybridization sites. In the second, only a portion of the t-BOC protecting groups was removed from the surface by limiting the time allowed for the deprotection reaction. The oligodeoxyribonucleotide-modified surfaces were extremely stable and performed well in DNA hybridization assays. These surfaces provide an alternative to gold or glass for surface immobilization of oligonucleotides in DNA arrays as well as a route for the coupling of nucleic acid biomolecular recognition elements to semiconductor materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号