首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since de-novo synthesis of pyrimidine nucleotides is coupled to the mitochondrial respiratory chain (RC) via dehydroorotic acid dehydrogenase (DHODH), respiratory chain dysfunction should impair pyrimidine synthesis. To investigate this, we used specific RC inhibitors, Antimycin A and Rotenone, to treat primary human keratinocytes and 143B cells, a human osteosarcoma cell line, in culture. This resulted in severe impairment of de novo pyrimidine nucleotide synthesis. The effects of RC inhibition were not restricted to pyrimidine synthesis, but concerned purine nucleotides, too. While the total amount of purine nucleotides was not diminished, they were significantly broken down from triphosphates to monophosphates, reflecting impaired mitochondrial ATP regeneration. The effect of Rotenone was similar to that of Antimycin A. This was surprising since Rotenone inhibits complex I of the respiratory chain, which is upstream of ubiquinone where DHODH interacts with the RC. In order to avoid unspecific effects of Rotenone, we examined the consequences of a mitochondrial DNA mutation that causes a specific complex I defect. The effect was much less pronounced than with Rotenone, suggesting that complex I inhibiton cannot fully explain the marked effect of Rotenone on pyrimidine nucleotide synthesis.  相似文献   

2.
Some mutations of the DHODH (dihydro-orotate dehydrogenase) gene lead to postaxial acrofacial dysostosis or Miller syndrome. Only DHODH is localized at mitochondria among enzymes of the de novo pyrimidine biosynthesis pathway. Since the pyrimidine biosynthesis pathway is coupled to the mitochondrial RC (respiratory chain) via DHODH, impairment of DHODH should affect the RC function. To investigate this, we used siRNA (small interfering RNA)-mediated knockdown and observed that DHODH knockdown induced cell growth retardation because of G2/M cell-cycle arrest, whereas pyrimidine deficiency usually causes G1/S arrest. Inconsistent with this, the cell retardation was not rescued by exogenous uridine, which should bypass the DHODH reaction for pyrimidine synthesis. DHODH depletion partially inhibited the RC complex III, decreased the mitochondrial membrane potential, and increased the generation of ROS (reactive oxygen species). We observed that DHODH physically interacts with respiratory complexes II and III by IP (immunoprecipitation) and BN (blue native)/SDS/PAGE analysis. Considering that pyrimidine deficiency alone does not induce craniofacial dysmorphism, the DHODH mutations may contribute to the Miller syndrome in part through somehow altered mitochondrial function.  相似文献   

3.
Cester  N.  Rabini  R.A.  Tranquilli  A.L.  Lucarelli  G.  Salvolini  E.  Staffolani  R.  Amler  E.  Zolese  G.  Mazzanti  L. 《Molecular and cellular biochemistry》1997,174(1-2):125-129
Pyrimidines and purine (deoxy)nucleotides are the building blocks of DNA and RNA. Nucleoside diphosphate sugars, e.g. UDP-glucose, are the reactive intermediates in the synthesis of nearly all glycosidic bonds between sugars.In mammals the requirement for pyrimidines is met by UMP de novo synthesis and, to a greater or lesser extent, by salvage of free nucleosides. The exceptional compartmentation of the de novo synthesis with respect to mitochondrially-bound dihydroorotate dehydrogenase ('DHOdehase' or 'DHODH', EC 1.3.99.11) is one focus of the present work. DHODH activity was determined by the dihydroorotate-dependent oxygen consumption or by the UV absorption of the product orotate with mitochondria isolated from rodent and porcine tissues. For comparison, the cytochrome c and choline-dependent oxygen consumption of mitochondria from different tissues was measured. The highest specific activity of the rat DHODH was found in liver (2.3 × 10-3 µmol/min × mg protein) > kidney > heart. The application of known enzyme inhibitors Brequinar Sodium and Leflunomide for DHODH and sodium cyanide for cytochrome c oxidase verified the specificity of the activity tests used. The relation of DHODH activity versus that of cytochrome c oxidase revealed the lowest ratios in heart mitochondria and the highest in liver mitochondria. Since disorders in the mitochondrial energy metabolism could entail severe impairment of pyrimidine biosynthesis via respiratory-chain coupled DHODH, it is suggested to include improvement of pyrimidine nucleotide status in therapy protocols. (Mol Cell Biochem 174: 125–129, 1997)  相似文献   

4.
The importance of methyl-thioIMP (Me-tIMP) formation for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity was studied in Molt F4 cells. Cytotoxicity of Me-MPR is caused by Me-tIMP formation with concomitant inhibition of purine de novo synthesis. Inhibition of purine de novo synthesis resulted in decreased purine nucleotide levels and enhanced 5-phosphoribosyl-1-pyrophosphate (PRPP) levels, with concurrent increased pyrimidine nucleotide levels. The Me-tIMP concentration increased proportionally with the concentration of Me-MPR. High Me-tIMP concentration also caused inhibition of PRPP synthesis. Maximal accumulation of PRPP thus occurred at low Me-MPR concentrations. As little as 0.2 μM Me-MPR resulted already after 2 h in maximal inhibition of formation of adenine and guanine nucleotides, caused by inhibition of purine de novo synthesis by Me-tIMP. Under these circumstances increased intracellular PRPP concentrations could be demonstrated, resulting in increased levels of pyrimidine nucleotides. So, in Molt F4 cells, formation of Me-tIMP form Me-MPR results in cytotoxicity by inhibition of purine de novo synthesis.  相似文献   

5.
Purine nucleotide biosynthesis was studied in culture forms of Trypanosoma cruzi strain Y, Crithidia deanei (a reduviid trypanosomatid with an endosymbiote) and an aposymbiotic strain of C. deanei (obtained by curing C. deanei with chloramphenicol). Trypanosoma cruzi was found to synthesize purine nucleotides only fring incorporated into both adenine and guanine nucleotides. Similar results were obtained with guanine, indicating that this flagellate has a system for the interconversion of purine nucleotides. Crithidia deanei was able to synthesize purine and pyrimidine nucleotides from glycine ("de novo" pathway) and purine nucleotides from adenine and guanine ("salvage" pathway). Adenine was incorporated into both adenine and guanine nucleotides, while guanine was incorporated into guanine nucleotides only, indicating the presence of a metabolic block at the level of GMP reductase. The aposymbiotic C. deanei strain was unable to utilize glycine for the synthesis of purine nucleotides, although glycine was utilized for synthesizing pyrimidine nucleotides. These results suggest that the endosymbiote is implicated in the de novo purine nucleotide pathway of the C. deanei-endosymbiote complex. The incorporation of adenine and guanine by aposymbiotic C. deanei strain followed a pattern similar to that observed for C. deanei.  相似文献   

6.
Dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) is a central enzyme of pyrimidine biosynthesis and catalyzes the oxidation of dihydroorotate to orotate. DHODH is an important target for antiparasitic and cytostatic drugs since rapid cell proliferation often depends on the de novo synthesis of pyrimidine nucleotides. We have cloned the pyr4 gene encoding mitochondrial DHODH from the basidiomycetous plant pathogen Ustilago maydis. We were able to show that pyr4 contains a functional mitochondrial targeting signal. The deletion of pyr4 resulted in uracil auxotrophy, enhanced sensitivity to UV irradiation, and a loss of pathogenicity on corn plants. The biochemical characterization of purified U. maydis DHODH overproduced in Escherichia coli revealed that the U. maydis enzyme uses quinone electron acceptor Q6 and is resistant to several commonly used DHODH inhibitors. Here we show that the expression of the human DHODH gene fused to the U. maydis mitochondrial targeting signal is able to complement the auxotrophic phenotype of pyr4 mutants. While U. maydis wild-type cells were resistant to the DHODH inhibitor brequinar, strains expressing the human DHODH gene became sensitive to this cytostatic drug. Such engineered U. maydis strains can be used in sensitive in vivo assays for the development of novel drugs specifically targeted at either human or fungal DHODH.  相似文献   

7.
We describe a young woman who presented with a progressive myopathy since the age of 9. Spectrophotometric analysis of the respiratory chain in muscle tissue revealed combined and profound complex I, III, II+III, and IV deficiency ranging from 60% to 95% associated with morphological and histochemical abnormalities of the muscle. An exhaustive screening of mitochondrial transfer and ribosomal RNAs showed a novel G>A substitution at nucleotide position 3090 which was detected only in urine sediment and muscle of the patient and was not found in her mother's blood cells and urine sample. We suggest that this novel de novo mutation in the 16S ribosomal RNA, a nucleotide which is highly conserved in different species, would impair mitochondrial protein synthesis and would cause a severe myopathy.  相似文献   

8.
Dihydroorotate dehydrogenase (DHODH) is an enzyme of the de novo pyrimidine synthesis pathway that provides nucleotides for RNA/DNA synthesis essential for proliferation. In mammalian cells, DHODH is localized in mitochondria, linked to the respiratory chain via the coenzyme Q pool. Here we discuss the role of DHODH in the oxidative phosphorylation system and in the initiation and progression of cancer. We summarize recent findings on DHODH biology, the progress made in the development of new, specific inhibitors of DHODH intended for cancer therapy, and the mechanistic insights into the consequences of DHODH inhibition.  相似文献   

9.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

10.
Dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), the fourth enzyme of pyrimidine de novo synthesis, is an integral flavoprotein of the inner mitchondrial membrane and is functionally connected to the respiratory chain. Here, experiments have been directed toward determining the roles of the N-terminal sequence motifs both in enzymatic properties of insect DHODH produced in vitro and the in vivo function of the protein. Full-length and three N-terminal truncated derivatives of the Drosophila melanogaster enzyme were expressed in Escherichia coli and purified. For identification on Western blots of recombinant DHODH as well as the native enzyme from flies polyclonal anti-DHODH immunoglobulins were generated and affinity-purified. The enzymatic characteristics of the four versions of DHODH were very similar, indicating that the N-terminus of the enzyme does not influence its catalytic function or its susceptibility to prominent DHODH inhibitors: A77-1726, brequinar, dichloroallyl-lawsone and redoxal. Whereas the efficacy of A77-1726 and dichloroallyl-lawsone were similar with Drosophila and human DHODH, that of brequinar and redoxal differed significantly. The differences in responses of insect DHODH and the enzyme from other species may allow the design of new agents that will selectively control insect growth, due to pyrimidine nucleotide limitation. In vivo expression of the full-length and N-truncated DHODHs from engineered transgenes revealed that the truncated proteins could not support normal de novo pyrimidine biosynthesis during development of the fly (i.e., failure to complement dhod-null mutations), apparently due to instability of the truncated proteins. It is concluded that the proper intracellular localization, directed by the N-terminal targeting and transmembrane motifs, is required for stability and subsequent proper biological function in vivo.  相似文献   

11.
It was shown earlier that a variety of vertebrate cells could grow indefinitely in sugar-free medium supplemented with either uridine or cytidine at greater than or equal to 1 mM. In contrast, most purine nucleosides do not support sugar-free growth for one of the following reasons. The generation of ribose-1-P from nucleoside phosphorylase activity is necessary to provide all essential functions of sugar metabolism. Some nucleosides, e.g. xanthosine, did not support growth because they are poor substrates for this enzyme. De novo pyrimidine synthesis was inhibited greater than 80% by adenosine or high concentrations of inosine, e.g. 10 mM, which prevented growth on these nucleosides; in contrast, pyrimidine synthesis was inhibited only marginally on 1 mM inosine or guanosine, but normal growth was only seen on 1 mM inosine, not on guanosine. The inhibition of de novo adenine nucleotide synthesis prevented growth on guanosine, since guanine nucleotides could not be converted to adenine nucleotides. Guanine nucleotides were necessary for this inhibition of purine synthesis, since a mutant blocked in their synthesis grew normally on guanosine. De novo purine synthesis was severely inhibited by adenosine, inosine, or guanosine, but in contrast to guanosine, adenosine and inosine could provide all purine requirements by direct nucleotide conversions.  相似文献   

12.
Concentrations and rates of synthesis of phosphoribosylpyrophosphate (PP-Rib-P) and purine nucleotides were compared in fibroblasts cultured from 5 males with PP-Rib-P synthetase superactivity, 3 normal individuals, and 2 children with severe hypoxanthine-guanine phosphoribosyltransferase deficiency. Although all cell strains with PP-Rib-P synthetase superactivity showed increased PP-Rib-P concentration and generation, increased rates of PP-Rib-P-dependent purine synthetic pathways, and increased purine and pyrimidine nucleoside triphosphate concentrations, two subgroups were discernible. Three fibroblast strains with isolated catalytic defects in PP-Rib-P synthetase showed milder increases in PP-Rib-P concentration (2.5-fold normal) and generation (1.6- to 2.1-fold) and in rates of purine synthesis de novo (1.6- to 2.2-fold) and purine nucleoside triphosphate pools (1.5-fold) than did cells from 2 individuals with combined kinetic defects in PP-Rib-P synthetase, both with purine nucleotide inhibitor-resistance. Values for these processes in the latter two strains were, respectively, 5- to 6-fold, 2.6- to 3.2-fold, 4- to 7-fold, and 1.7- to 2.2-fold those of normal cells. In contrast to cells with catalytic defects, these cells also excreted an abnormally high proportion of labeled purines and resisted purine base-mediated inhibition of PP-Rib-P and purine nucleotide synthesis. Hypoxanthine-guanine phosphoribosyltransferase-deficient cells showed normal regulation of PP-Rib-P synthesis and normal nucleoside triphosphate pools despite increased rates of purine synthesis de novo and of purine excretion. Cells with PP-Rib-P synthetase superactivity thus synthesize purine nucleotides at increased rates as a consequence of increased PP-Rib-P production, despite increased purine nucleotide concentrations. These and additional findings provide evidence that regulation of purine synthesis de novo is effected at both the PP-Rib-P synthetase and amidophosphoribosyltransferase reactions.  相似文献   

13.
The maximum catalytic activities of carbamoyl-phosphate synthase II, a limiting enzyme for pyrimidine nucleotide synthesis, are very much less than those of glutaminase, a limiting enzyme for glutamine utilization, in lymphocytes and macrophages; and the flux through the pathway for pyrimidine formation de novo is only about 0.4% of the rate of glutamine utilization by lymphocytes. The Km of synthase II for glutamine is about 16 microM and the concentration of glutamine necessary to stimulate lymphocyte proliferation half-maximally is about 21 microM. This agreement suggests that the importance of glutamine for these cells is provision of nitrogen for biosynthesis of pyrimidine nucleotides (and probably purine nucleotides). However, the glutamine concentration necessary for half-maximal stimulation of glutamine utilization (glutaminolysis) by the lymphocytes is 2.5 mM. The fact that the rate of glutamine utilization by lymphocytes is markedly in excess of the rate of the pathway for pyrimidine nucleotide synthesis de novo and that the Km and 'half-maximal concentration' values are so different, suggests that the glutaminolytic pathway is independent of the use of glutamine nitrogen for pyrimidine synthesis.  相似文献   

14.
The comprehensive studies of purine nucleotide metabolism were done in nonstimulated and phytohemagglutinin (PHA)-stimulated human peripheral blood T lymphocytes. Nonstimulated lymphocytes synthesize nucleotides in two alternative pathways: via biosynthesis de novo and salvage pathways. Although synthesis of triphosphonucleosides in unstimulated lymphocytes was the predominant pathway, interconversion of monophosphonucleosides was also active. Exposure of cells to PHA affects differently various pathways of nucleotide metabolism. The most marked changes observed were rapid activation of purine salvage within minutes after exposure to PHA, and significant increase of 5-phosphoribosyl-1-pyrophosphate levels. In addition, significant increases were found in de novo purine biosynthesis, nucleotide interconversions, and RNA and DNA synthesis, whereas catabolism of nucleotides remained unchanged. These results indicate that PHA activation of T lymphocytes causes a rapid synthesis of nucleotides which may be required immediately for increases in energy metabolism and later as the precursors of nucleic acid synthesis.  相似文献   

15.
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.  相似文献   

16.
Purine and pyrimidine nucleotides play critical roles in DNA and RNA synthesis as well as in membrane lipid biosynthesis and protein glycosylation. They are necessary for the development and survival of mature T lymphocytes. Activation of T lymphocytes is associated with an increase of purine and pyrimidine pools. However, the question of how purine vs pyrimidine nucleotides regulate proliferation, cell cycle, and survival of primary T lymphocytes following activation has not yet been specifically addressed. This was investigated in the present study by using well-known purine (mycophenolic acid, 6-mercaptopurine) and pyrimidine (methotrexate, 5-fluorouracil) inhibitors, which are used in neoplastic diseases or as immunosuppressive agents. The effect of these inhibitors was analyzed according to their time of addition with respect to the initiation of mitogenic activation. We showed that synthesis of both purine and pyrimidine nucleotides is required for T cell proliferation. However, purine and pyrimidine nucleotides differentially regulate the cell cycle since purines control both G(1) to S phase transition and progression through the S phase, whereas pyrimidines only control progression from early to intermediate S phase. Furthermore, inhibition of pyrimidine synthesis induces apoptosis whatever the time of inhibitor addition whereas inhibition of purine nucleotides induces apoptosis only when applied to already cycling T cells, suggesting that both purine and pyrimidine nucleotides are required for survival of cells committed into S phase. These findings reveal a hitherto unknown role of purine and pyrimidine de novo synthesis in regulating cell cycle progression and maintaining survival of activated T lymphocytes.  相似文献   

17.
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 10-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.  相似文献   

18.
Abstract: Human glioma cell extracts were found to elicit a marked growth-promoting activity on human neuroblastoma cells. This activity was also detected in the extracts of neurofibroma type 1 (NF1; von Recklinghausen neurofibromatosis) comprising aberrant Schwann cell growth. The purified substance from the NF1 extracts by HPLC on ODS columns was identical to a pyrimidine nucleoside, uridine, the chemical structure of which was identified by gas chromatography-mass spectrometry. The authentic uridine showed a strong growth-promoting activity on human neuroblastoma cells. Other purine or pyrimidine nucleotides, their derivatives, and ribose sources for their syntheses were employed to test the activity; a purine nucleoside, adenosine, showed a stronger activity than uridine. The current study raises the possibility that human neuroblastoma cells may be affected by dysfunctions of the de novo pathway of both purine and pyrimidine nucleotide biosyntheses.  相似文献   

19.
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate in the pyrimidine biosynthesis pathway. It is functionally connected to the respiratory chain, delivering electrons to ubiquinone. We report here that inhibition of cytochrome c oxidase by nitric oxide (NO) indirectly inhibits DHODH activity. In digitonin-permeabilized cells, DEA/NO, a chemical NO donor, induced a dramatic decrease in DHO-dependent O(2) consumption. The inhibition was reversible and more pronounced at low O(2) concentration; it was correlated with a decrease in orotate synthesis. Since orotate is the precursor of all pyrimidine nucleotides, indirect inhibition of DHODH by NO may significantly contribute to NO-dependent cytotoxicity.  相似文献   

20.
Early renal hypertrophy of diabetes is associated with increases in the tissue content of RNA, DNA, and sugar nucleotides involved in the formation of carbohydrate-containing macromolecules. We have previously reported an increase in the activity of enzymes of the de novo and salvage pathways of purine synthesis in early diabetes; the present communication explores the changes in the pathways of pyrimidine synthesis. Measurements have been made of key enzymes of the de novo and salvage pathways at 3, 5, and 14 days after induction of diabetes with streptozotocin (STZ), phosphoribosyl pyrophosphate (PPRibP), and some purine and pyrimidine bases. Carbamoyl-phosphate synthetase II, the rate-limiting enzyme of the de novo route, did not increase in the first 5 days after STZ treatment, the period of most rapid renal growth; a significant rise was seen at 14 days (+38%). Dihydroorotate dehydrogenase, a mitochondrial enzyme, showed the most marked rise (+147%) at 14 days. The conversion of orotate to UMP, catalyzed by the enzymes of complex II, was increased at 3 days (+42%), a rise sustained to 14 days. The salvage route enzyme, uracil phosphoribosyltransferase (UPRTase), showed a pattern of change similar to complex II. The effect of the decreased concentration of PPRibP on the activities of CPSII, for which it is an allosteric activator, and on activities of OPRTase and UPRTase, for which it is an essential substrate, is discussed with respect to the relative Ka and Km values for PPRibP and the possibility of metabolite channeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号