首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We developed a bacterial genetic system based on translation of the his operon leader peptide gene to determine the relative speed at which the ribosome reads single or multiple codons in vivo. Low frequency effects of so-called “silent” codon changes and codon neighbor (context) effects could be measured using this assay. An advantage of this system is that translation speed is unaffected by the primary sequence of the His leader peptide. We show that the apparent speed at which ribosomes translate synonymous codons can vary substantially even for synonymous codons read by the same tRNA species. Assaying translation through codon pairs for the 5′- and 3′- side positioning of the 64 codons relative to a specific codon revealed that the codon-pair orientation significantly affected in vivo translation speed. Codon pairs with rare arginine codons and successive proline codons were among the slowest codon pairs translated in vivo. This system allowed us to determine the effects of different factors on in vivo translation speed including Shine-Dalgarno sequence, rate of dipeptide bond formation, codon context, and charged tRNA levels.  相似文献   

3.
Castle JC 《PloS one》2011,6(6):e20660
Rates of SNPs (single nucleotide polymorphisms) and cross-species genomic sequence conservation reflect intra- and inter-species variation, respectively. Here, I report SNP rates and genomic sequence conservation adjacent to mRNA processing regions and show that, as expected, more SNPs occur in less conserved regions and that functional regions have fewer SNPs. Results are confirmed using both mouse and human data. Regions include protein start codons, 3' splice sites, 5' splice sites, protein stop codons, predicted miRNA binding sites, and polyadenylation sites. Throughout, SNP rates are lower and conservation is higher at regulatory sites. Within coding regions, SNP rates are highest and conservation is lowest at codon position three and the fewest SNPs are found at codon position two, reflecting codon degeneracy for amino acid encoding. Exon splice sites show high conservation and very low SNP rates, reflecting both splicing signals and protein coding. Relaxed constraint on the codon third position is dramatically seen when separating exonic SNP rates based on intron phase. At polyadenylation sites, a peak of conservation and low SNP rate occurs from 30 to 17 nt preceding the site. This region is highly enriched for the sequence AAUAAA, reflecting the location of the conserved polyA signal. miRNA 3' UTR target sites are predicted incorporating interspecies genomic sequence conservation; SNP rates are low in these sites, again showing fewer SNPs in conserved regions. Together, these results confirm that SNPs, reflecting recent genetic variation, occur more frequently in regions with less evolutionarily conservation.  相似文献   

4.
Q. Liu 《Plant biosystems》2013,147(1):100-106
Abstract

A comprehensive analysis of sequence patterns around the stop codons was performed, by using more than 26,000 rice full-length cDNA sequences. Here it is shown that the bias was most outstanding at the position immediately before the stop codons (?1 codon), where the AAC codon was strongly preferred among ANC codons. Compared with other positions, the codon immediately after the stop codons (+1 codon) also displayed an apparent difference, and had a strong consensus for base A at the first, C at the second, and A at the third letters, respectively. Notably, the base biases at the positions directly downstream of the stop codons, such as the +4, +5 and +6 positions, were much stronger than other positions in the 3′-UTR region, suggesting that those base positions might act as an extended stop signal in the process of protein synthesis. Examination of the relationship between sequence pattern and gene expression level, assessed by CAI values and EST counting, revealed a tendency towards bigger base biases for highly expressed genes. It could be inferred that the translation stop signal is possibly involved in many sequence recognition elements other than the stop codons; highly expressed genes should hold strong sequence consensus around the stop codons for efficient translation termination.  相似文献   

5.
Glutathione reductase (GR) is a chemotherapeutic target. Murine GRcDNA, which contains 85% GC in the 38 codons following the start codon, was assembled from the PCR-amplified exon 1 and a downstream cDNA prior to expression in Escherichia coli as a His(6)-tagged protein. Recombinant GR, an FAD-containing homodimer, corresponds in its enzymic and spectral properties to GR isolated from murine Ehrlich ascites tumor cells. Another cDNA, representing GR with a mitochondrial targeting sequence, yielded two distinct enzymically active expression products.  相似文献   

6.
Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression in Sulfolobus islandicus, a hyperthermophilic crenarchaeon. Two expression vectors, pSeSD and pEXA, harboring 11 unique restriction sites were constructed. They contain coding sequences of two hexahistidine (6×His) peptide tags and those coding for two protease sites, the latter of which make it possible to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started at multiple sites downstream of the 6×His codons. Intriguingly, inserting an RBS site upstream of the ATG codon regained the expression of the 6×His tag, as shown with pSeSD-N-lacS. These results have yielded novel insight into the archaeal translation mechanism. The crenarchaeon Sulfolobus can utilize N-terminal coding sequences of proteins to specify translation initiation in the absence of an RBS site.  相似文献   

7.
Selenoproteins are an essential and unique group of proteins in which selenocysteine (Sec) is incorporated in response to a stop codon (UGA). Reprograming of UGA for Sec insertion in eukaryotes requires a cis-acting stem–loop structure in the 3′ untranslated region of selenoprotein mRNA and several trans-acting factors. Together these factors are sufficient for Sec incorporation in vitro, but the process is highly inefficient. An additional challenge is the synthesis of selenoprotein P (SELENOP), which uniquely contains multiple UGA codons. Full-length SELENOP expression requires processive Sec incorporation, the mechanism for which is not understood. In this study, we identify core coding region sequence determinants within the SELENOP mRNA that govern SELENOP synthesis. Using 75Se labeling in cells, we determined that the N-terminal coding sequence (upstream of the second UGA) and C-terminal coding sequence context are two independent determinants for efficient synthesis of full-length SELENOP. In addition, the distance between the first UGA and the consensus signal peptide is also critical for efficiency.  相似文献   

8.
Structure of the gene encoding the exoglucanase of Cellulomonas fimi   总被引:29,自引:0,他引:29  
G O'Neill  S H Goh  R A Warren  D G Kilburn  R C Miller 《Gene》1986,44(2-3):325-330
In Cellulomonas fimi the cex gene encodes an exoglucanase (Exg) involved in the degradation of cellulose. The gene now has been sequenced as part of a 2.58-kb fragment of C. fimi DNA. The cex coding region of 1452 bp (484 codons) was identified by comparison of the DNA sequence to the N-terminal amino acid (aa) sequence of the Exg purified from C. fimi. The Exg sequence is preceded by a putative signal peptide of 41 aa, a translational initiation codon, and a sequence resembling a ribosome-binding site five nucleotides (nt) before the initiation codon. The nt sequence immediately following the translational stop codon contains four inverted repeats, two of which overlap, and which can be arranged in stable secondary structures. The codon usage in C. fimi appears to be quite different from that of Escherichia coli. A dramatic (98.5%) bias occurs for G or C in the third position for the 35 codons utilized in the cex gene.  相似文献   

9.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

10.
11.
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)1→16Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site.  相似文献   

12.
Regularities of context-dependent codon bias in eukaryotic genes   总被引:10,自引:1,他引:9       下载免费PDF全文
Nucleotides surrounding a codon influence the choice of this particular codon from among the group of possible synonymous codons. The strongest influence on codon usage arises from the nucleotide immediately following the codon and is known as the N1 context. We studied the relative abundance of codons with N1 contexts in genes from four eukaryotes for which the entire genomes have been sequenced: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana. For all the studied organisms it was found that 90% of the codons have a statistically significant N1 context-dependent codon bias. The relative abundance of each codon with an N1 context was compared with the relative abundance of the same 4mer oligonucleotide in the whole genome. This comparison showed that in about half of all cases the context-dependent codon bias could not be explained by the sequence composition of the genome. Ranking statistics were applied to compare context-dependent codon biases for codons from different synonymous groups. We found regularities in N1 context-dependent codon bias with respect to the codon nucleotide composition. Codons with the same nucleotides in the second and third positions and the same N1 context have a statistically significant correlation of their relative abundances.  相似文献   

13.
Replication protein A (RPA), the heterotrimeric single-stranded-DNA (ssDNA) binding protein (SSB) of eukaryotes, contains two homologous ssDNA binding domains (A and B) in its largest subunit, RPA1, and a third domain in its second-largest subunit, RPA2. Here we report that Saccharomyces cerevisiae RPA1 contains a previously undetected ssDNA binding domain (domain C) lying in tandem with domains A and B. The carboxy-terminal portion of domain C shows sequence similarity to domains A and B and to the region of RPA2 that binds ssDNA (domain D). The aromatic residues in domains A and B that are known to stack with the ssDNA bases are conserved in domain C, and as in domain A, one of these is required for viability in yeast. Interestingly, the amino-terminal portion of domain C contains a putative Cys4-type zinc-binding motif similar to that of another prokaryotic SSB, T4 gp32. We demonstrate that the ssDNA binding activity of domain C is uniquely sensitive to cysteine modification but that, as with gp32, ssDNA binding is not strictly dependent on zinc. The RPA heterotrimer is thus composed of at least four ssDNA binding domains and exhibits features of both bacterial and phage SSBs.  相似文献   

14.
15.
With the rapid development of the ribosome field in recent years a quick, simple and high-throughput method for purification of the bacterial ribosome is in demand. We have designed a new strain of Escherichia coli (JE28) by an in-frame fusion of a nucleotide sequence encoding a hexa-histidine affinity tag at the 3′-end of the single copy rplL gene (encoding the ribosomal protein L12) at the chromosomal site of the wild-type strain MG1655. As a result, JE28 produces a homogeneous population of ribosomes (His)6-tagged at the C-termini of all four L12 proteins. Furthermore, we have developed a single-step, high-throughput method for purification of tetra-(His)6-tagged 70S ribosomes from this strain using affinity chromatography. These ribosomes, when compared with the conventionally purified ones in sucrose gradient centrifugation, 2D-gel, dipeptide formation and a full-length protein synthesis assay showed higher yield and activity. We further describe how this method can be adapted for purification of ribosomal subunits and mutant ribosomes. These methodologies could, in principle, also be used to purify any functional multimeric complex from the bacterial cell.  相似文献   

16.
In vitro selection and directed evolution of peptides from mRNA display are powerful strategies to find novel peptide ligands that bind to target biomolecules. In this study, we expanded the mRNA display method to include multiple nonnatural amino acids by introducing three different four-base codons at a randomly selected single position on the mRNA. Another nonnatural amino acid may be introduced by suppressing an amber codon that may appear from a (NNK)n nucleotide sequence on the mRNA. The mRNA display was expressed in an Escherichia coli in vitro translation system in the presence of three types of tRNAs carrying different four-base anticodons and a tRNA carrying an amber anticodon, the tRNAs being chemically aminoacylated with different nonnatural amino acids. The complexity of the starting mRNA-displayed peptide library was estimated to be 1.1 × 1012 molecules. The effectiveness of the four-base codon mediated mRNA display method was demonstrated in the selection of biocytin-containing peptides on streptavidin-coated beads. Moreover, a novel streptavidin-binding nonnatural peptide containing benzoylphenylalanine was obtained from the nonnatural peptide library. The nonnatural peptide library from the four-base codon mediated mRNA display provides much wider functional and structural diversity than conventional peptide libraries that are constituted from 20 naturally occurring amino acids.  相似文献   

17.
Occasionally, ribosomes stall on mRNAs prior to the completion of the polypeptide chain. In Escherichia coli and other eubacteria, tmRNA-mediated trans-translation is a major mechanism that recycles the stalled ribosomes. The tmRNA possesses a tRNA-like domain and a short mRNA region encoding a short peptide (ANDENYALAA in E. coli) followed by a termination codon. The first amino acid (Ala) of this peptide encoded by the resume codon (GCN) is highly conserved in tmRNAs in different species. However, reasons for the high evolutionary conservation of the resume codon identity have remained unclear. In this study, we show that changing the E. coli tmRNA resume codon to other efficiently translatable codons retains efficient functioning of the tmRNA. However, when the resume codon was replaced with the low-usage codons, its function was adversely affected. Interestingly, expression of tRNAs decoding the low-usage codon from plasmid-borne gene copies restored efficient utilization of tmRNA. We discuss why in E. coli, the GCA (Ala) is one of the best codons and why all codons in the short mRNA of the tmRNA are decoded by the abundant tRNAs.  相似文献   

18.
Alleles of the var1 locus on yeast mitochondrial DNA specify the size of var1 ribosomal protein. We report the nucleotide sequence of a var1 allele that determines the smallest var1 protein. It contains an open reading frame of 396 codons, which we identify as the structural gene for var1 protein. The var1 protein specified by this allele has an amino acid composition in close agreement with that predicted by the DNA sequence. The var1 coding region is highly unusual: it is 89.6% AT and contains a 46 bp GC-rich palindromic cluster that accounts for 38% of the total GC residues. Our results strongly suggest that like mammalian mitochondria but unlike those from Neurospora, yeast mitochondria use AUA as a methionine codon. Comparison with the sequence of a var1 allele specifying a larger protein suggests that some size polymorphism of var1 protein results from in-frame insertions of a variable number of AAT (Asn) codons.  相似文献   

19.
Indolicidin is a broad-spectrum antimicrobial peptide (AMP) with great therapeutic potential; however, high manufacturing costs associated with industrial-scale chemical synthesis have limited its delivery. Therefore, the use of recombinant DNA technology to produce this peptide is urgently needed. In this study, a new methodology for the large-scale production of a novel bovine AMP was developed. LNK-16 is an analogue of indolicidin that contains a kallikrein protease site at its C-terminus. The amino acid sequence of LNK-16 was synthesized using Escherichia coli-preferred codons. Three copies of the target gene were assembled in series by overlapping PCR and cloned into pET-30a(+) for the expression of His-(LNK-16)3 in E. coli BL21 (DE3) cells. The expressed fusion protein His-(LNK-16)3 was purified by Ni2+-chelating chromatography and then cleaved by kallikrein to release LNK-16. The recombinant LNK-16 peptide showed antimicrobial activity similar to that of chemically synthesized LNK-16 and indolicidin. Together, these data indicate that the use of serial expression can improve the large-scale production of AMPs for clinical and research applications.  相似文献   

20.
Codon usage in mitochondrial genome of the six different plants was analyzed to find general patterns of codon usage in plant mitochondrial genomes. The neutrality analysis indicated that the codon usage patterns of mitochondrial genes were more conserved in GC content and no correlation between GC12 and GC3. T and A ending codons were detected as the preferred codons in plant mitochondrial genomes. The Parity Rule 2 plot analysis showed that T was used more frequently than A. The ENC-plot showed that although a majority of the points with low ENC values were lying below the expected curve, a few genes lied on the expected curve. Correspondence analysis of relative synonymous codon usage yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggest that natural selection is likely to be playing a large role in codon usage bias in plant mitochondrial genomes, but not only natural selection but also other several factors are likely to be involved in determining the selective constraints on codon bias in plant mitochondrial genomes. Meantime, 1 codon (P. patens), 6 codons (Z. mays), 9 codons (T. aestivum), 15 codons (A. thaliana), 15 codons (M. polymorpha) and 15 codons (N. tabacum) were defined as the preferred codons of the six plant mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号