首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fish have a secondary vessel system which emerges from the primary vasculature via large numbers of coiled origins. The precise role of this vessel system is unknown. Vascular casting techniques and scanning electron microscopy reveal that the secondary vessels of the blue catfish, Arius graeffei, originate from dorsal, lateral, and ventral segmental primary arteries and from the caudal dorsal aorta. These vessels anastomose with each other to form larger secondary arteries which parallel the primary vessels for their entire length. Secondary vessels do not appear to form a capillary bed in the skin in A. graeffei as they do in some fish species. Coiled secondary vessel origins are abundant within the tunica media and adventitia of the primary vessels from which they emerge. The origins of the secondary vessels are surrounded by the extensive cytoplasmic processes of specialized endothelial cells. These processes extend for up to 6 μm into the lumen of the primary vessel. Ultrastructurally the coiled secondary capillaries consist of an endothelial cell tube which is surrounded by a single layer of pericytes. These endothelial cells extend large numbers of microvilli into the lumen of the coiled secondary capillary. Nerve terminals are commonly associated with the coiled secondary capillaries. Immunohistochemistry has revealed the presence of tyrosine-hydroxylase, an enzyme involved in catecholamine synthesis in nerve varicosities close to secondary vessels in A. graeffei. This vessel system could therefore be regulated by adrenergic nerves. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
The epicardial coronary arteries experience significant torsion in the axial direction due to changes in the shape of the heart during the cardiac cycle. The objective of this study was to determine the torsional mechanical properties of the coronary arteries under various circumferential and longitudinal loadings. The coronary artery was treated as a two-layer composite vessel consisting of intima-medial and adventitial layers, and the shear modulus of each layer was determined. Eight porcine hearts were obtained at a local abattoir, and their right coronary and left anterior descending arteries were isolated and tested in vitro with a triaxial torsion machine (inflation, longitudinal stretch, and circumferential twist). After the intact vessel was tested, the adventitia was dissected away, leaving an intact media that was then tested under identical triaxial loading conditions. We proposed a biomechanical analysis to compute the shear modulus of the adventitia from the measured shear moduli of the intact vessel and the media. To validate our predictions, we used four additional hearts in which the shear modulus of the adventitia was measured after dissection of media. Our results show that the shear modulus does not depend on the shear stress or strain but varies linearly with circumferential and longitudinal stresses and in a nonlinear way with the corresponding strains. Furthermore, we found that the shear modulus of the adventitia is larger than that of the intact vessel, which is larger than the vessel media. These results may have important implications for baroreceptor sensitivity, circulation of the vasa vasorum, and coronary dissection.  相似文献   

4.
5.
Blood vessels are subject to tensile stress and associated strain which may influence the structure and organization of smooth muscle cells (SMCs) during physiological development and pathological remodeling. This study focused on the influence of the major tensile strain on the SMC orientation in the blood vessel wall. Several blood vessels, including the aorta, the mesenteric artery and vein, and the jugular vein of the rat were used to observe the normal distribution of tensile strains and SMC orientation; and a vein graft model was used to observe the influence of altered strain direction on the SMC orientation. The circumferential and longitudinal strains in these blood vessels were measured by using a biomechanical technique, and the SMC orientation was examined by fluorescent microscopy at times of 10, 20, and 30 days. Results showed that the SMCs were mainly oriented in the circumferential direction of straight blood vessels with an average angle of approximately 85 deg between the SMC axis and the vessel axis in all observed cases. The SMC orientation coincided with the principal direction of the circumferential strain, a major tensile strain, in the blood vessel wall. In vein grafts, the major tensile strain direction changed from the circumferential to the longitudinal direction at observation times of 10, 20, and 30 days after graft surgery. This change was associated with a decrease in the angle between the axis of newly proliferated SMCs and that of the vessel at all observation times (43 +/- 11 deg, 42 +/- 10 deg, and 41 +/- 10 deg for days 10, 20, and 30, respectively), indicating a shift of the SMC orientation from the circumferential toward the longitudinal direction. These results suggested that the major tensile strain might play a role in the regulation of SMC orientation during the development of normal blood vessels as well as during remodeling of vein grafts.  相似文献   

6.
Abstract. The anterior lateral arteries are paired vessels leaving the anterior end of the lobster ( Homarus americanus ) heart and proceeding to the antennae and eyestalks, the stomach and hepatopancreas, the gonads, and the thoracic and branchial muscles. These vessels have a trilaminar organization, consisting of a tunica interna with elastic fibrils, a tunica intermedia represented by a bilayered cell mass, and a tunica externa with collagen fibrils. In the tunica intermedia, cells flanking the tunica interna (light cells) show less affinity for basic dyes and electron stains than those flanking the tunica externa (dark cells). Each light cell exhibits an irregularly shaped stress fiber (a bundle of closely packed microfilaments) in the region adjoining the tunica interna. Collectively, these bundles have a circumferential or slightly oblique orientation relative to the lumen of the vessel. The role of the stress fibers is unresolved. If they are static structures, they might contribute to the non-linear elasticity shown by lobster arteries. If they generate force, and small bundles of microfilaments do diverge from the stress fibers to enter filamentous mats applied to the plasmalemmata, a coordinated contraction of the cells might reduce the luminal diameter and, thus, retard the flow of hemolymph. Coordination of contraction would have to occur in the absence of nerves and without the benefit of communicating (gap) junctions between the light and dark cells.  相似文献   

7.
Heart failure is a condition closely linked to diabetes. Hyperglycaemia amplifies the generation of a major advanced glycation end product Nepsilon-(carboxymethyl)lysine (CML), which has been associated with the development of vascular and inflammatory complications. An increased accumulation of CML in hearts of diabetic patients may be one of the mechanisms related to the high risk of heart failure. Therefore, we investigated the localization of CML in diabetic hearts. To investigate the presence and accumulation of CML in tissues, a monoclonal anti-CML antibody was generated and characterised. With this novel monoclonal antibody against CML, the localization of CML was investigated by immunohistochemistry, in heart tissue of controls (n = 9) and heart tissue of diabetic patients (n = 8) without signs of inflammation or infarction. In addition, in the same subjects we studied the presence of CML in renal and lung tissues. CML staining was approximately sixfold higher in hearts from diabetic patients as compared to control hearts (2.0 +/- 0.3 and 0.3 +/- 0.2 A.U., respectively, P < 0.01). CML deposition was localized in the small intramyocardial arteries in endothelial cells and smooth muscle cells, but not in cardiomyocytes. These arteries did not show morphological abnormalities. The intensity of staining between arteries at the epicardial, midcardial and endocardial side did not vary significantly within patients. In renal tissues, CML staining was most prominent in tubules and in atherosclerotic vessels, without differences in intensity between controls and diabetic patients. In non-infected lungs, no CML was detected. In conclusion, CML adducts are abundantly present in small intramyocardial arteries in the heart tissue of diabetic patients. The accumulation of CML in diabetic hearts may contribute to the increased risk of heart failure in hyperglycaemia.  相似文献   

8.
Günther Pass 《Zoomorphology》1991,110(3):145-164
Summary A comparative investigation of the antennal circulatory organs in representatives of the Onychophora, all subtaxa of the Myriapoda and numerous taxa of the Hexapoda (comprising a total of 54 species) revealed an unexpected diversity in structure and function.In the Onychophora, antennal vessels exist which are connected to the enlarged anterior end of the aorta dorsal to the brain.In the Chilopoda, Diplopoda and Symphyla, antennal vessels exist which originate from the dorsal vessel caudal to the brain. They extend under the optic lobes, lateral to the circumoesophageal connectives, into the antennae.In the Hexapoda, the investigations include representatives of all higher taxa, apart from the Paraneoptera and the Holometabola. Generally, antennal vessels exist. In the Diplura, they originate from the anterior end of the aorta in front of the brain. In all other insects the antennal vessels are separate from the dorsal vessel. Their proximal ends form ampullary enlargements which are attached to the frontal cuticle near the antenna bases. They communicate via valved ostia with the haemolymph sinus in front of the brain. In the Archaeognatha, Zygentoma, Odonata, certain Plecoptera and the Notoptera, no muscles are connected to these organs. In all other groups the ampullae are pulsatile as a result of associated muscles (antennal hearts). These muscles diverge widely in their attachments and act either as compressors (Dermaptera) or dilators of the ampullae (Embioptera, Blattopteroidea, Orthopteroidea, and some Plecoptera).In the Collembola and Ephemeroptera, special antennal circulatory organs are lacking. In some forms the anatomical arrangement of the inner organs, in conjunction with short diaphragms at the antenna bases, apparently leads to a channelling of haemolymph flow. This condition may be explained by the very short antennae of these insects and is considered as a convergent and apomorphic state in these taxa.The antennal vessels are supposed to be homologous within the Tracheata and to represent the lateral arteries of the antenna segment. An origin from the dorsal vessel is considered an ancestral state, which was lost in the stem lineage of the Ectognatha. Specific space constraints within the cephalic capsule are discussed as the possible reason for this loss. The evolution of pulsatile antennal circulatory organs in the Neoptera is the result of the association of muscles with the proximal ampullary ends of the antennal vessels. The attachments and innervation of these muscles indicate a derivation from precerebral pharyngeal dilators.Abbreviations Amp ampulla - Ant antenna - ant anterior - AN antennal nerve - Ao aorta - AV antennal vessel - Br brain - BrSi brain sinus - CC corpora cardiaca - CoeC circumoesophageal connectives - CM compressor muscle of ampulla - CT connective tissue - Dia diagphragm - do dorsal - DM dilator muscle of ampulla - DM1 ampullo-ampullary dilator muscle - DM2 ampullo-pharyngeal dilator muscle - DM3 ampullo-frontal dilator muscle - DM Acc accessory dilator muscle of ampulla - DV dorsal vessel - EB elastic band - FbDM fronto-buccal pharynx dilator muscle - FG frontal ganglion - FSa frontal sac - FSe frontal septum - FSi frontal sinus - Lb labium - LV lateral vessel of aorta - MA mouth-angle - Nr nervus recurrens - Oc ocellus - Oe oesophagus - OeSi oesophageal sinus - Ost ostium - Ph pharynx - Pl labial palpus - RM retractor muscle of mouth-angle - RMl lateral retractor of mouth-angle - RMm medial retractor of mouth-angle - SceSi supracerebral sinus - SD salivary duct - T tentorium  相似文献   

9.
BACKGROUND: Although normal coronary artery embryogenesis is well described in the literature, little is known about the development of coronary vessels in abnormal hearts. METHODS: We used an animal model of retinoic acid (RA)-evoked outflow tract malformations (e.g., double outlet right ventricle [DORV], transposition of the great arteries [TGA], and common truncus arteriosus [CTA]) to study the embryogenesis of coronary arteries using endothelial cell markers (anti-PECAM-1 antibodies and Griffonia simplicifolia I (GSI) lectin). These markers were applied to serial sections of staged mouse hearts to demonstrate the location of coronary artery primordia. RESULTS: In malformations with a dextropositioned aorta, the shape of the peritruncal plexus, from which the coronary arteries develop, differed from that of control hearts. This difference in the shape of the early capillary plexus in the control and RA-treated hearts depends on the position of the aorta relative to the pulmonary trunk. In both normal and RA-treated hearts, there are several capillary penetrations to each aortic sinus facing the pulmonary trunk, but eventually only 1 coronary artery establishes patency with 1 aortic sinus. CONCLUSIONS: The abnormal location of the vessel primordia induces defective courses of coronary arteries; creates fistulas, a single coronary artery, and dilated vessel lumens; and leaves certain areas of the heart devoid of coronary artery branches. RA-evoked heart malformations may be a useful model for elucidating abnormal patterns of coronary artery development and may shed some light on the angiogenesis of coronary artery formation.  相似文献   

10.
The vascular organisation of the branchial basket was examined in two Tetraodontiform fishes; the three-barred porcupinefish, Dicotylichthys punctulatus and the banded toadfish, Marylina pleurosticta by scanning electron microscopy of vascular casts and standard histological approaches. In D. punctulatus, interarterial anastomoses (iaas) originated at high densities from the efferent filamental and branchial arteries, subsequently re-anastomosing to form progressively larger secondary vessels. Small branches of this system entered the filament body, where it was interspersed between the intrafilamental vessels. Large-bore secondary vessels ran parallel with the efferent branchial arteries, and were found to constitute an additional arterio–arterial pathway, in that these vessels exited the branchial basket in company with the mandibular, the carotid and the afferent and efferent branchial arteries, from where they gave rise to capillary beds after exit. Secondary vessels were not found to supply filament muscle; rather these tissues were supplied by single specialised vessels running in parallel between the efferent and afferent branchial arteries in both species examined. Although the branchial vascular anatomy was generally fairly similar for the two species examined, iaas were not found to originate from any branchial component in the banded toadfish, M. pleurosticta, which instead showed a moderate frequency of iaas on other vessels in the cephalic region. It is proposed that four independent vascular pathways may be present within the teleostean gill filament, the conventional arterio–arterial pathway across the respiratory lamellae; an arterio–arterial system of secondary vessels supplying the filament and non-branchial tissues; a system of vessels supplying the filament musculature; and the intrafilamental vessels (central venous sinus). The present study demonstrates that phylogenetic differences in the arrangement of the branchial vascular system occur between species of the same taxon.  相似文献   

11.
There is no doubt that atherosclerosis is one of the most important health problems in the Western Societies. It is well accepted that atherosclerosis is associated with abnormal stress and strain conditions. A compelling observation is that the epicardial arteries develop atherosclerosis while the intramural arteries do not. Atherosclerotic changes involving the epicardial portion of the coronary artery stop where the artery penetrates the myocardium. The objective of the present study is to understand the fluid and solid mechanical differences between the two types of vessels. A finite element analysis was employed to investigate the effect of external tissue contraction on the characteristics of pulsatile blood flow and the vessel wall stress distribution. The sequential coupling of fluid-solid interaction (FSI) revealed that the changes of flow velocity and wall shear stress, in response to cyclical external loading, appear less important than the circumferential stress and strain reduction in the vessel wall under the proposed boundary conditions. These results have important implications since high stresses and strains can induce growth, remodeling, and atherosclerosis; and hence we speculate that a reduction of stress and strain may be atheroprotective. The importance of FSI in deformable vessels with pulsatile flow is discussed and the fluid and solid mechanics differences between epicardial and intramural vessels are highlighted.  相似文献   

12.
Perforation plates and other vessel details as studied with scanning electron microscopy (SEM) have been reported for four species of Cornaceae (s.l.): similar features are shown by the four, suggesting that a more extensive sampling of the family might reveal similar phenomena. Perforation plates contain pit membrane remnants in the form of threads or, less commonly, laminar portions perforated by pores. When least well-represented, the pit membrane remnants are restricted to lateral ends of perforations and to the perforations transitional to lateral wall pitting. Perforations are all clearly bordered. Helical thickenings that do not form a continuous gyre are reported for the vessel walls ofAucuba. The presence of pit membrane remnants in vessel elements of Cornaceae correlates with the mesic habitats occupied by species in this family. The presence and type of pit membrane remnants reported by us in the three genera is very similar, although pit membrane remnants are doubtless a symplesiomorphy and thus not an indicator of relationships. The presence of pit membrane remnants in the three genera, however, does attest to the primitiveness of wood and other features of Cornaceae s.l.  相似文献   

13.
Abstract A detailed study of the structure of the heart and the general disposition of the efferent (arterial) vessels and afferent (venous) vessels is presented. The vascular system of P. hawaiensis is compared with that of other species of amphipods and the differences are pointed out. All the appendages except the pleopods receive their efferent vessels directly from the heart and not from the sternal sinus.  相似文献   

14.
Fifty hearts of corpses of humans of different age groups were studied by means of macro-microscopical anatomical dissection of muscle fibres and cardiac blood vessels. The muscle bridges were found over the coronary arteries in all preparations of the heart. They were most frequently met on the anterior interventricular branch of the left coronary artery. The topography of muscle bridges is described and the miocardium muscle bundles participating in their formation are revealed. The character of the course of fibres in the muscle bridge is related to the course of the fibres of the muscle bundle forming it.  相似文献   

15.
Endothelial dysfunction precedes the development of morphological atherosclerotic changes and can also contribute to lesion development in cardiovascular diseases. Currently, there is a lack of a single method to determine endothelial function of the entire range of vessel dimensions from aorta to arterioles. Here we assessed endothelial function of a large range of size arteries using a unified isovolumic myograph method. The method maintains a constant volume of fluid in the lumen of the vessel during contraction and relaxation, which are characterized by an increase and a decrease of pressure, respectively. Segments of six aortas, six common femoral arteries, and six mesenteric arteries from rats; six carotid arteries from mice; and six coronary and carotid arteries from pigs were used. The endothelium-dependent dose-response vasorelaxation was determined with endothelium-dependent vasodilators while arterial preconstriction was induced with vasoconstrictors at a submaximal dose. The circumferential midtension during vascular reactivity varied from 43.1 ± 7.9 to 2.59 ± 0.46 mN/mm (from large to small arteries), whereas the circumferential midstress showed a much smaller variation from 217 ± 23.5 to 123 ± 15.3 kPa (in the same range of vessels). We also found that overinflation and axial overelongation compromised endothelium-dependent vasorelaxation to underscore the significance of vessel preload. In conclusion, an isovolumic myograph was used to unify arterial vasoreactivity from large to small arteries and shows the uniformity of wall stress and %tension throughout the range of vessel sizes.  相似文献   

16.
Tracheary elements from macerations of roots and stems of one species each of five genera of Araceae subfamily Colocasioideae were studied by means of SEM (scanning electron microscopy). All of the genera have vessel elements not merely in roots, as previously reported for the family as a whole, but also in stems. The vessel elements of stems in all genera other than Syngonium are less specialized than those of roots; stem vessel elements are tracheid-like and have porose pit membrane remnants in perforations. The perforations with pit membrane remnants demonstrate probable early stages in evolution of vessels from tracheids in primary xylem of monocotyledons. The vessel elements with such incipient perforation plates lack differentiation in secondary wall thickenings between perforation plate and lateral wall, and such vessel elements cannot be identified with any reliability by means of light microscopy. The discrepancy in specialization between root and stem vessel elements in genera other than Syngonium is ascribed to probable high conductive rates in roots where soil moisture fluctuates markedly, in contrast with the storage nature of stems, in which selective value for rapid conduction is less. Syngonium stem vessels are considered adapted for rapid conduction because the stems in that genus are scandent. Correlation between vessel element morphology and ecology and habit are supported. Although large porosities in vessel elements facilitate conduction, smaller porosities may merely represent rudimentary pit membrane lysis.  相似文献   

17.
Distributing and delivering vessels of the human heart   总被引:2,自引:2,他引:0       下载免费PDF全文
The branching characteristics of the right coronary artery, acute marginal, posterior descending, left anterior descending, circumflex, and obtuse marginal arteries are compared with those of diagonal branches, left and right ventricular branches, septal, and higher-order branches, to test a newly proposed functional classification of the coronary arteries in which the first group rank as distributing vessels and the second as delivering vessels. According to this classification, the function of the first type is merely to convey blood to the borders of myocardial zones, while the function of the second is to implement the actual delivery of blood into these zones. This functional difference is important in the hemodynamic analysis of coronary heart disease, as it provides an assessment of the role of a vessel within the coronary network and hence an assessment of the functional importance of that vessel in a particular heart. Measurements from casts of human coronary arteries are used to examine the relevant characteristics of these vessels and hence to test the basis of this classification.  相似文献   

18.
The hypothesis that greater safety from cavitation by air-seeding through inter-vessel pits comes at the cost of less porous pit membranes with greater flow resistance was tested . Sixteen vessel-bearing species were compared: 11 from the Rosaceae, four from other angiosperm families, and one fern. Unexpectedly, there was no relationship between pit resistance (and hence the prevailing membrane porosity) and cavitation pressure. There was, however, an inverse relationship between pit area per vessel and vulnerability to cavitation (r2 = 0.75). This suggests that cavitation is caused by the rare largest membrane pore per vessel, the average size of which increases with total pit area per vessel. If safety from cavitation constrains pit membrane surface area, it also limits vessel surface area and the minimum vessel resistivity. This trade-off was consistent with an approximately three-fold increase in vessel resistivity with cavitation pressure dropping from −0.8 to −6.6 MPa. The trade-off was compensated for by a reduction in the percentage of vessel wall pitted: from 10–16% in vulnerable species to 2–4% in resistant species. Across species, end-wall pitting accounted for 53 ± 3% of the total xylem resistivity. This corresponded to vessels achieving on average 94 ± 2% of their maximum possible conductivity if vessel surface area is constrained.  相似文献   

19.
In experimental animals, bradykinin type-1 receptors (BK-1Rs) are induced during inflammation and ischemia, and, by exerting either cardioprotective or cardiotoxic effects, they may contribute to the pathogenesis of heart failure. Nothing is known about the expression of BK-1Rs in human heart failure. Human heart tissue was obtained from excised hearts of patients undergoing cardiac transplantation (n = 13), due to idiopathic dilated cardiomyopathy (IDC; n = 7) or to coronary heart disease (CHD; n = 6), and from normal hearts (n = 6). The expression of BK-1Rs was analyzed by means of competitive RT-PCR, Western blot analysis, and immunohistochemistry. Expression of BK-1R mRNA was increased in both IDC (2.8-fold) and CHD (2.1-fold) hearts compared with normal hearts. The observed changes were verified at the protein level. Expression of BK-1Rs in failing hearts localized to the endothelium of intramyocardial coronary vessels and correlated with an increased expression of TNF-alpha in the vessel wall. Treatment of human coronary artery endothelial cells with TNF-alpha increases their BK-1R expression. These novel results show that BK-1Rs are induced in the endothelium of intramyocardial coronary vessels in failing human hearts and so may participate in the pathogenesis of heart failure.  相似文献   

20.
In 33 puppies 2-4 months of age the model of a congenital heart disease was made as coarctation of the aorta. In 6-12 months 18 animals were taken to study, and in 15 animals the coarctation was removed. The latter animals were observed for other 6-12 months. The hearts of both groups were separately weighed, and the vessels of the coronary system were studied by means of a complex of histological and morphometric methods. Simultaneously, the number of smooth muscle cells, as well as the area and volume of their nuclei in media of small coronary arteries were estimated. At the experimental coarctation of the aorta certain hypertrophic-hyperplastic changes in coronary arteries at all branching levels take place. They are of a compensatory-adaptive character and reflect certain reactions of the vascular wall to an increased coronary hemodynamics under conditions of hyperfunction and hypertrophy of the cardiac muscle. Surgical removal of the coarctation is accompanied with a reduce of the hemodynamic loading of the heart, diminished degree of hypertrophy of the organ and a marked decrease of the hypertrophic-hyperplastic changes in its vessels. At the same time, the cardiac vascular system is adapting to the new conditions of circulation: rearrangement of some coronary arteries and arterioles according to the closed type and reduction of circulation in the vascular branches which have lost their importance in feeding the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号