首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
In the present study, we first investigated the effects of various types of low-energy, low-frequency electromagnetic fields (EMFs) on DNA synthesis in UMR-106 osteoblast-like cells. The experimental groups were exposed to EMFs for 2 days (twice/day, 30 min/time), and DNA synthesis was measured. The results showed that the cells responded most sensitively to EMFs of some specific combinations of the parameters by an increase in DNA synthesis, implying that EMFs with a specific waveform rather than a complex one can be used in clinical electrotherapy. The parameters were as follows: pulsed electric field (PEF) with pulse width 0.2 ms, field strength 10 V/cm, frequency 125 Hz; sinusoidal electric field (SEF) with field strength 1 V/cm, frequency 10 Hz; and alternating magnetic field (AMF) with field density 0.5 mT, frequency 5 Hz. In addition to frequency, the field strength or field density within a suitable intensity scale played a dominant role in causing the DNA synthesis response. We then compared the effects of two kinds of fields, PEF and AMF, with the optimum parameters identified by the experiments, on alkaline phosphatase (ALP) activity, protein and collagen synthesis, and intracellular levels of cyclic adenosine monophosphate (cAMP). The results indicated that both fields could not only affect UMR-106 cells proliferation but could particularly affect a series of characteristic bioactivities of UMR-106 such as ALP activity and collagen synthesis. The intracellular cAMP levels were increased rapidly and greatly with exposure to both PEF and AMF, implying that the action of low-frequency EMFs proceeds via second messenger-dependent processes originating from signals at the cell membrane. The difference in action between PEF and AMF suggests that they may couple to the cell membrane in a partially different way.  相似文献   

2.
A series of experiments on rats have been performed, to study the effects of long time (50 days) exposure to electromagnetic fields of extremely low frequency (ELF, i.e. less than 100 Hz) and amplitude (non thermal), testing whether the metabolic processes would be affected. The background lies on recent observations on the behaviour of isolated enzymes in vitro exposed to EFL fields. In these experiments, the cyclotron (or Larmor) frequency of the metallic ion has been used to "stimulate" the metalloproteins redox-active site, thus obtaining a clear variation of the enzyme functionality. In this paper we have extended for the first time the check to more complex animal metabolism. The novelty of this approach implies that a large amount of data had to be analyzed since it was not possible, in principle, to select only a few parameters among all the potential effects. Several biochemical parameters have been evaluated by comparing their values during the periods of exposure (field ON) and non exposure (field OFF). The evidence that long term exposure to electromagnetic fields with a well defined frequency may have relevant effects on parameters such as body weight, blood glucose and fatty acid metabolism has been obtained.  相似文献   

3.
Experiments assessed whether long term exposure to 50 Hz pulsed electromagnetic fields with a peak magnetic field of 3 mT can alter the dynamics of intracellular calcium in human astrocytoma U-373 MG cells. Pretreatment of cells with 1.2 microM substance P significantly increased the [Ca(2+)](i). The same effect was also observed when [Ca(2+)](i) was evaluated in the presence of 20 mM caffeine. After exposure to electromagnetic fields the basal [Ca(2+)](i) levels increased significantly from 143 +/- 46 nM to 278 +/- 125 nM. The increase was also evident after caffeine addition, but in cells treated with substance P and substance P + caffeine we observed a [Ca(2+)](i) decrease after exposure. When we substituted calcium-free medium for normal medium immediately before the [Ca(2+)](i) measurements, the [Ca(2+)](i) was similar to that measured in the presence of Ca(2+). In this case, after EMFs exposure of cells treated with substance P, the [Ca(2+)](i), measured without and with addition of caffeine, declined from 824 +/- 425 to 38 +/- 13 nM and from 1369 +/- 700 to 11 +/- 4 nM, respectively, indicating that electromagnetic fields act either on intracellular Ca(2+) stores or on the plasma membrane. Moreover the electromagnetic fields that affected [Ca(2+)](i) did not cause cell proliferation or cell death and the proliferation indexes remained unchanged after exposure.  相似文献   

4.
Pulsed electromagnetic fields promote healing of delayed united and ununited fractures by triggering a series of events in fibrocartilage. We examined the effects of a pulsed electromagnetic field (recurrent bursts, 15.4 Hz, of shorter pulses of an average of 2 gauss) on rabbit costal chondrocytes in culture. A pulsed electromagnetic field slightly reduced the intracellular cyclic adenosine 3',5'-monophosphate (cAMP) level in the culture. However, it significantly enhanced cAMP accumulation in response to parathyroid hormone (PTH) to 140% of that induced by PTH in its absence, while it did not affect cAMP accumulation in response to prostaglandin E1 or prostaglandin I2. The effect on cAMP accumulation in response to PTH became evident after exposure of the cultures to the pulsed electromagnetic field for 48 h, and was dependent upon the field strength. cAMP accumulation in response to PTH is followed by induction of ornithine decarboxylase, a good marker of differentiated chondrocytes, after PTH treatment for 4 h. Consistent with the enhanced cAMP accumulation, ornithine decarboxylase activity induced by PTH was also increased by the pulsed electromagnetic field to 170% of that in cells not exposed to a pulsed electromagnetic field. Furthermore, stimulation of glycosaminoglycan synthesis, a differentiated phenotype, in response to PTH was significantly enhanced by a pulsed electromagnetic field. Thus, a pulsed electromagnetic field enhanced a series of events in rabbit costal chondrocytes in response to PTH. These findings show that exposure of chondrocytes to a pulsed electromagnetic field resulted in functional differentiation of the cells.  相似文献   

5.
This study was carried out to investigate the effects of 100 and 217 Hz extremely low-frequency pulsed electromagnetic fields (ELF-PEMF) on cell proliferation, actin reorganization, and ROS generation in a human breast carcinoma cells (T47D). Cells were exposed for 24–72 h, at 100 and 217 Hz, 0.1 mT. The treatment induced a time dependent decrease in cell growth after 72 h and revealed an increase in fluorescence intensity in cytoplasm and actin aggregations around the nucleus as detected by fluorescence microscopy. The amount of actin in T47D cells increased after 48 h exposure to 100 Hz and 24 h to 217 Hz while no changes in nuclear morphology were detected. Exposing the cells to 217 Hz for 72 h caused a dramatically increase of intracellular ROS generation while with exposure to 100 Hz it remained nearly unchanged. These results suggest that exposure to ELF-PEMF (100, 217 Hz, 0.1 mT) are able inducing an increase of actin level, its migration toward nucleus but despite of these changes and dramatically increase in ROS generation the symptoms of apoptosis were not observed. Our results support the hypothesis that cell response to EMF may only be observed at certain window effects; such as frequency and intensity of EMF parameters.  相似文献   

6.
7.
There is growing public concern that radio frequency electromagnetic fields may have adverse biological effects. In the present study eight healthy male students were tested to see whether or not radio frequency electromagnetic fields as used in modern digital wireless telecommunication (GSM standard) have noticeable effects on salivary melatonin, cortisol, neopterin, and immunoglobulin A (sIgA) levels during and several hours after exposure. In a specifically designed, shielded experimental chamber, the circularly polarized electromagnetic field applied was transmitted by an antenna positioned 10 cm behind the head of upright sitting test persons. The carrier frequency of 900 MHz was pulsed with 217 Hz (average power flux density 1 W/m2). In double blind trials, each test person underwent a total of 20 randomly allotted 4 hour periods of exposure and sham exposure, equally distributed at day and night. The results obtained show that the salivary concentrations of melatonin, cortisol, neopterin and sIgA did not differ significantly between exposure and sham exposure.  相似文献   

8.
The action of interferential current (IFC) upon intracellular content of cyclic adenosine monophosphate (cAMP) after prestimulation with the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) has been investigated. Human promyelocytes (HL-60) differentiated to granulocytes by dimethylsulphoxide (DMSO) have been treated with different concentrations of fMLP. This enhances their cAMP content. The half maximal effective concentration (EC50) was about 4 nM. Exposure to IFC with modulation frequencies of 35 and 125 Hz (5 min, 250 microA/cm2) after prestimulation with various concentrations of fMLP had no enhancing effect at low or high concentrations of fMLP. In contrast, at medium concentrations in the range of about 100 pM fMLP, a significant enhancement of cAMP could be observed. This synergistic effect of fMLP and IFC has been examined in detail by varying the modulation frequency, current density, and exposure time. Enhancement of cAMP content could be observed at certain modulation frequencies and exposure times suggesting a window effect, whereas for the current density in the range measured (8.5 microA/cm2-2.5 mA/cm2) a constant enhancement could be observed. The synergistic effect of fMLP and IFC could only be observed in the treatment sequence of fMLP followed by IFC; an inverse sequence had no effect on the cAMP content. .  相似文献   

9.
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.  相似文献   

10.
Abstract

Calcium transients play an essential role in cardiomyocytes and electromagnetic fields (EMF) and affect intracellular calcium levels in many types of cells. Effects of EMF on intracellular calcium transients in cardiomyocytes are not well studied. The aim of this study was to assess whether extremely low frequency electromagnetic fields (ELF-EMF) could affect intracellular calcium transients in cardiomyocytes. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to rectangular-wave pulsed ELF-EMF at four different frequencies (15?Hz, 50?Hz, 75?Hz and 100?Hz) and at a flux density of 2?mT. Intracellular calcium concentration ([Ca2+]i) was measured using Fura-2/AM and spectrofluorometry. Perfusion of cardiomyocytes with a high concentration of caffeine (10?mM) was carried out to verify the function of the cardiac Na+/Ca2+ exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca2+-ATPase (SERCA2a). The results showed that ELF-EMF enhanced the activities of NCX and SERCA2a, increased [Ca2+]i baseline level and frequency of calcium transients in cardiomyocytes and decreased the amplitude of calcium transients and calcium level in sarcoplasmic reticulum. These results indicated that ELF-EMF can regulate calcium-associated activities in cardiomyocytes.  相似文献   

11.
To evaluate the effects of extremely low frequency magnetic field (ELFMF) on beta-cell survival and function, we cultured a hamster-derived insulin-secreting cell line (HIT-T15), which exhibits responsiveness to glucose in a semi-physiological range, under exposure to sham and ELFMF conditions, and assessed cell survival and function. We used our previously developed ELFMF exposure unit (a sinusoidal magnetic field at a frequency of 60 Hz, 5 mT) to culture cells under exposure to ELFMF conditions. We found that exposure to ELFMF for 5 days in the absence of glucose increased cell number, exposure for 2 days in the absence of glucose and for 5 days with 100 mg/dl glucose increased the insulin secretion to the culture medium, and exposure for 2 and 5 days with 40 and 100 mg/dl glucose increased intracellular insulin concentration in HIT-T15 cells. The increase in cell number under apoptotic culture conditions by exposure to ELFMF could lead to new therapeutic concepts in the treatment of diabetes. The ELFMF-induced increase in intracellular insulin concentration could be utilized to develop culture conditions to enhance intracellular insulin concentration in insulin-secreting cells that would be useful for cell transplantation to cure diabetes mellitus.  相似文献   

12.
The rationale was to investigate the effects of low-energy electromagnetic fields (EMF) on the proliferation of bovine coronary and murine aortic smooth muscle cells (SMC). EMF were applied to SMC at field frequencies of 25, 50, or 100 Hz, and exposure time was set to 5, 15, or 30 minutes. Significant increases in SMC-counts compared with sham exposed controls were found for all EMF-frequencies tested. The effect was most pronounced for 50 Hz fields with maximum increases of 1.2-fold over controls. Sequential double exposure of mouse aortic SMC to 50 Hz fields revealed significantly enhanced cell proliferation by 1.2 fold compared with single exposure (p < 0.05). Experiments performed on bovine SMC also revealed significant increases in cell proliferation. The results demonstrate that EMF are capable of significantly enhancing the proliferation of vascular SMC. These results rise the question whether EMF would qualify as supportive means to angio-/arteriogenic approaches.  相似文献   

13.
14.
In autosomal dominant polycystic kidney disease (ADPKD), arginine vasopressin (AVP) accelerates cyst growth by stimulating cAMP-dependent ERK activity and epithelial cell proliferation and by promoting Cl(-)-dependent fluid secretion. Tolvaptan, a V2 receptor antagonist, inhibits the renal effects of AVP and slows cyst growth in PKD animals. Here, we determined the effect of graded concentrations of tolvaptan on intracellular cAMP, ERK activity, cell proliferation, and transcellular Cl(-) secretion using human ADPKD cyst epithelial cells. Incubation of ADPKD cells with 10(-9) M AVP increased intracellular cAMP and stimulated ERK and cell proliferation. Tolvaptan caused a concentration-dependent inhibition of AVP-induced cAMP production with an apparent IC(50) of ~10(-10) M. Correspondingly, tolvaptan inhibited AVP-induced ERK signaling and cell proliferation. Basolateral application of AVP to ADPKD cell monolayers grown on permeable supports caused a sustained increase in short-circuit current that was completely blocked by the Cl(-) channel blocker CFTR(inh-172), consistent with AVP-induced transepithelial Cl(-) secretion. Tolvaptan inhibited AVP-induced Cl(-) secretion and decreased in vitro cyst growth of ADPKD cells cultured within a three-dimensional collagen matrix. These data demonstrate that relatively low concentrations of tolvaptan inhibit AVP-stimulated cell proliferation and Cl(-)-dependent fluid secretion by human ADPKD cystic cells.  相似文献   

15.
Numerous experiments have yielded contradictory results on the harmful action of magnetic fields on embryonic development. Pulsed magnetic fields appear to be able to delay normal development of embryos. In the present study, fertilized Gallus domesticus eggs were exposed during incubation to pulsed magnetic fields (harmonic signals of 10 μT for 1 second with silences of 0.5 seconds) of 50 or 100 Hz frequency. Embryos extracted at 45 h of exposure to fields of 50 Hz or 100 Hz frequency had significantly (p<0.05) fewer somite pairs compared with controls of the same age. At 15 days of incubation, only embryos exposed to a 10 μT- 50 Hz field had a significantly (p<0.05) higher somatic weight. At 21 days of incubation, a significantly lower somatic weight (p<0.01) and development stage (p<0.05) was found in embryos exposed to a 10 μT-100 Hz field than in controls, while a lower development stage (p<0.05) alone was observed in those exposed to a 10 μT-50 Hz field. In addition, animals showed higher expression of the neural marker NSE (neural specific enolase) after 21 days of development as determined by immunohistochemistry, with very low expression of glycosaminoglycans identified by alcyan blue staining. These results suggest that pulsed magnetic fields may be able to hinder normal embryonic development in vivo and to alter normal neural function, at least at the intensities and frequencies analyzed in the present study.  相似文献   

16.
17.
The effects of electromagnetic fields on several processes related to cell physiology and proliferation are currently being investigated. Although the results are still not conclusive and even conflicting, there seems to be a fairly good agreement on the early effects of electromagnetic fields on the generation of free radicals and on Ca++-intracellular concentration and transport. To evaluate the long-lasting consequences of these precocious events, we examined the effects of short- and long-term magnetic field exposure on structural organization (cytokeratin or actin detection), proliferation (bromodeoxyuridine incorporation and propidium iodide staining), colony forming ability and viability (trypan blue exclusion test) of highly proliferating MCF-7 cells (from human breast carcinoma) and on slowly proliferating normal human fibroblasts (from healthy donors). Cells were exposed to either 20 or 500 microT sinusoidally oscillating (50Hz) magnetic fields for different lengths of time (1 to 4 days). Short (1 day)- and long (4 days)-time exposure to the two intensities did not affect MCF-7 growth and viability, colony number and size, or cellular distribution along the cell cycle; neither were the cell morphology and the intracellular distribution and amount of cytokeratin modified. Similarly, no modifications in the actin distribution and proliferative potential were observed in normal human fibroblasts. These findings suggest that under our experimental conditions, continuous exposure to magnetic fields does not result in any appreciable effect in both normal and tumor cells in vitro.  相似文献   

18.
This study was undertaken to determine the effects of extremely low frequency (ELF; 60 Hz) electromagnetic (EM) fields on somatic growth and cortical development, as well as biochemical and morphological maturation, of the rat neopallium. On the fifth day of pregnancy, female rats were put in pairs into plastic cages that were housed in a specially constructed apparatus for irradiation under three separate sets of combination and intensity: 1) 1 kV/m and 10 gauss; 2) 100 kV/m and 1 gauss; and 3) 100 kV/m and 10 gauss. The dams were exposed for 23 h daily, from days 5 through 19 postconception after which they were returned to cages outside the exposure apparatus until they littered. The neonates were culled to eight pups per litter. At 0 (birth), 5, 12, and 19 days postnatally, they were killed for biochemical and morphological studies. Another group of pregnant rats was sham-exposed in an identical apparatus, which was not energized, and the pups were used as controls. The irradiated rats exhibited no physical abnormalities, nor did they show brain deformities such as swelling or herniation following exposure to ELF-EM fields. There was no difference in somatic growth between control and exposed rats, but a small reduction in cortical weight was observed in rats exposed at 1 kV/m and 10 gauss, and 100 kV/m and 1 gauss, respectively. Biochemical measurements of DNA. RNA, protein, and cerebroside concentrations indicated that among the three separate exposures, only the neopallium of rats exposed at 1 kV/m and 10 gauss showed a small reduction in DNA level, as well as small reductions in RNA and protein levels. No changes were noticed in cerebroside levels in any exposed animals, and there were no differences in protein/DNA and cerebroside/DNA ratios between control and exposed rats. Morphological observations did not reveal any detectable alterations in the irradiated rats. These results indicate that exposure to ELF-EM fields caused minimal or no changes in somatic growth and cerebral development of the rat. © 1993 Wiley-Liss, Inc.  相似文献   

19.
BACKGROUND: There are several reports that indicate a linkage between exposure to power frequency (50 - 60 Hz) magnetic fields with abnormalities in the early embryonic development of the chicken. The present study was designed to understand whether power frequency electromagnetic fields could act as an environmental insult and invoke any neurochemical or toxicological changes in developing chick embryo model. METHODS: Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50 Hz) of varying intensities (5, 50 or 100 microT) for a period of up to 15 days. The embryos were taken out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured, along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological investigations were carried out based on aminotransferases (AST and ALT) and lactate dehydrogenase activities in the whole embryo as well as in the liver. RESULTS: The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 microT magnetic fields. There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 microT only). The possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to magnetic field exposure. CONCLUSIONS: Based on these studies we conclude that magnetic field-induced changes in norepinephrine levels might help explain alterations in the circadian rhythm, observed during magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for developmental abnormalities.  相似文献   

20.
Exposure of isolated perfused rat livers to either 100 microM-forskolin, a potent activator of adenylate cyclase, or to 0.5 mM-concentrations of the cAMP analogues chlorophenylthio cAMP (CPTcAMP), dibutyryl cAMP (dbcAMP) and 8-bromo cAMP (8BrcAMP), to provoke increases in intracellular concentrations of cAMP, resulted in marked changes in bile volume and composition. Bile flow reached a peak after 10 min, before declining towards control levels, and an increase in several secretory parameters was also observed at this time. At 20 min, a substantial decrease in the output of both phospholipid and cholesterol was evident, and this suppression of secretion was maintained throughout the remainder of the experiment. The order of effectiveness of the cAMP-elevating agents at decreasing biliary lipid output was CPTcAMP greater than forskolin greater than dbcAMP greater than 8BrcAMP. Biliary output of bile acids was essentially unaltered compared with controls; similarly, no decrease in the secretion of protein and triacylglycerols into the perfusion medium was observed. This suggests that the elevation of intracellular levels of cAMP may cause a selective inhibition of biliary lipid output rather than a more general inhibition of hepatic secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号