首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
We have designed, synthesized, and evaluated using physical, chemical and biochemical assays various oligonucleotide N3′ → P5′ phosphoramidates, as potential telomerase inhibitors. Among the prepared compounds were 2′-deoxy, 2′-hydroxy, 2′-methoxy, 2′-ribo-fluoro, and 2′-arabino-fluoro oligonucleotide phosphoramidates, as well as novel N3′ → P5′ thio-phosphoramidates. The compounds demonstrated sequence specific and dose dependent activity with IC50 values in the sub-nM to pM concentration range.  相似文献   

3.
A series of oligonucleotide conjugates were designed and synthesized as novel inhibitors of human telomerase. These compounds contain a relatively short (6-7-mer) oligonucleotide domain, with an N3'-->P5' phosphoramidate (np) or thio-phosphoramidate (nps) backbone, targeted to the template region of the RNA component of the enzyme and various pendant groups attached to either their 5'- or preferably to the 3'-termini. The most potent compounds in the series inhibited telomerase with low nM IC50 values in biochemical assays whereas the cognate oligonucleotides without the pendant groups were significantly less active having IC50 values 100-1000-fold higher.  相似文献   

4.
Based on our previous docking model, in order to carry out more rational drug design, totally 82 vinyl sulfonyl fluorides, including some 2-(hetero)arylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides derivatives as potential human telomerase inhibitors were designed and synthesised. The in vitro anticancer activity assay showed that compound 57 (1E,3E)-4-(4-((E)-2-(fluorosulfonyl)vinyl)phenyl)buta-1,3-diene-1-sulfonyl fluoride exhibited high activity against A375 and MDA-MB-231 cell lines with IC50 1.58 and 3.22?µM, but it manifested obvious un-toxic effect against GES-1 and L-02 with IC50 with IC50 values less than 2.00?mM. By the modified TRAP assay, some compounds including 57 exhibited potent inhibitory activities against telomerase with IC50 values of 0.71–0.97?µM.  相似文献   

5.
Nearly 30 synthetic nucleosides were tested with human recombinant poly(ADP-ribose) polymerase 1 as potential inhibitors of this enzyme. The most active compounds were some disaccharide analogues of thymidine: 3′-O-β-D-ribofuranosyl-5-iodo-dUrd (2d; IC50 = 45 μM), 3′-O-β-D-ribofuranosyl-2′-deoxythymidine (2e; IC50 = 38 μM), and 3′-O-β-D-ribofuranosyl-2′-deoxythymidine oxidized (4; IC50 = 25 μM). These compounds also reduced H2O2-induced synthesis of poly(ADP-ribose) in cultured human ovarian carcinoma (SKOV-3) cells in a dose-dependent manner. Furthermore, compounds 2d or 2e until a concentration of 1 mM did not affect growth of SKOV-3 cells, whereas dialdehyde compound 4, as well as thymidine, exhibited a significant cytotoxicity.  相似文献   

6.
The M2 isoform of pyruvate kinase (PKM2) is a potential antitumor therapeutic target. In this study, we designed and synthesised a series of 2, 3-didithiocarbamate substituted naphthoquinones as PKM2 inhibitors based on the lead compound 3k that we previously reported. Among them, compound 3f (IC50?=?1.05?±?0.17 µM) and 3h (IC50?=?0.96?±?0.18 µM) exhibited potent inhibition of PKM2, and their inhibitory activities are superior to compound 3k (IC50?=?2.95?±?0.53 µM) and the known PKM2 inhibitor shikonin (IC50?=?8.82?±?2.62 µM). In addition, we evaluated in vitro antiproliferative effects of target compounds using MTS assay. Most target compounds exhibited dose-dependent cytotoxicity with IC50 values in nanomolar concentrations against HCT116, MCF7, Hela, H1299 and B16 cells. These small molecule PKM2 inhibitors not only provide candidate compounds for cancer therapy, but also offer a tool to probe the biological effects of PKM2 inhibition on cancer cells.  相似文献   

7.
Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N′-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a–f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a–f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b–d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50?=?9.99?±?0.18 µM); which is comparable to quercetin (IC50?=?9.93?±?0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50?>?200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.  相似文献   

8.
We compared the cytotoxic activities of dietary epoxylignans and their stereoisomers and found (?)-verrucosin, which is (7S,7′R,8R,8′R)-7,7′-epoxylignan, to be the most cytotoxic epoxylignan against HeLa cells (IC50 = 6.6 μM). On the other hand, the activity was about a factor of 10 less against HL-60. In this research on the relationship between the structure and cytotoxic activity of (?)-verrucosin 13, the 7-(4-methoxyphenyl)-7′-(3,4-dimethoxyphenyl) derivative 60, for which the activity (IC50 = 2.4 μM) is three times greater than (?)-verrucosin 13, was discovered. The induction of apoptosis by caspase 3/7 was observed upon treatment with the (?)-verrucosin derivative.  相似文献   

9.
The CHCl3-soluble fraction of the whole plant of Duranta repens showed anti-plasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum, with IC50 values of 8.5?±?0.9 and 10.2?±?1.5?μg/mL, respectively. From this fraction, two new flavonoid glycosides, 7-O-α-d-glucopyranosyl-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (1) and 7-O-α-d-glucopyranosyl(6′′′-p-hydroxcinnamoyl)-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (2), along with five known flavonoids, 3,7,4′-trihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (3), 3,7-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6,4′-trimethoxyflavone (4), 5,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-butenyl)-3,6,4′-trimethoxyflavone (5), 3,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-buten-yl)-5,6,4′-trimethoxyflavone (6), and 7-O-α-d-glucopyranosyl-3,5-dihydroxy-3′-(4′′-acetoxy-3′′-methylbutyl)-6,4′-dimethoxyflavone (7), have been isolated as anti-plasmodial principles. Their structures were deduced by spectroscopic analysis including 1D and 2D NMR techniques. The compounds (1–7) showed potent anti-plasmodial activities against D6 and W2 strains of Plasmodium falciparum, with IC50 values in the range of 5.2–13.5?μM and 5.9–13.1?μM, respectively.  相似文献   

10.
A series of substituted phenylethylidenehydrazinylpyridinium derivatives bearing methyl, ethyl, propyl, and propylphenyl groups on the pyridinium nitrogen were synthesized and evaluated for in vitro antileishmanial activity against Leishmania tropica by using the microdilution method. Among the tested compounds, 3d, 5c, 3b, and 3c were found to be the most active derivatives against the promastigotes of L. tropica (IC50 values are 6.90, 9.92, 11.69 and 12.03 µM, respectively) and to be more active than reference drug meglumine antimonaite (glucantime) (IC50 value: 20.49 µM). The derivatives investigated in this study may have the potential to be lead compound against leishmanial infection.  相似文献   

11.
A new series of 4,6-disubstituted 2-(4-(dimethylamino)styryl)quinoline 4a,b9a,b was synthesized by the reaction of 2-(4-(dimethylamino)styryl)-6-substituted quinoline-4-carboxylic acids 3a,b with thiosemicarbazide, p-hydroxybenzaldehyde, ethylcyanoacetate, and 2,4-pentandione. In addition, the antitumour activity of all synthesized compounds 3a,b9a,b was studied via MTT assay against two cancer cell lines (HepG2 and HCT116). Furthermore, epidermal growth factor receptor (EGFR) inhibition, using the most potent antitumour compounds, 3a, 3b, 4a, 4b, and 8a, was evaluated. The interpretation of the results showed clearly that the derivatives 3a, 4a, and 4b exhibited the highest antitumour activities against the tested cell lines HepG2 and HCT116 with IC50 range of 7.7–14.2?µg/ml, in comparison with the reference drugs 5-fluorouracil (IC50?=?7.9 and 5.3?µg/ml, respectively) and afatinib (IC50?=?5.4 and 11.4?µg/ml, respectively). In vitro EGFR screening showed that compounds 3a, 3b, 4a, 4b, and 8a exhibited moderate inhibition towards EGFR with IC50 values at micromolar levels (IC50 range of 16.01–1.11?µM) compared with the reference drugs sorafenib (IC50 =?1.14?µM) and erlotinib (IC50 =?0.1?µM). Molecular docking was performed to study the mode of interaction of compounds 3a and 4b with EGFR kinase.  相似文献   

12.
Abstract

A series of novel 4-chlorophenyl N-alkyl phosphoramidates of 3′-[4-fluoroaryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidines (2049) was synthesized by means of phosphorylation of 3′-[4-aryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidines (711) with 4-chlorophenyl phosphoroditriazolide (14), followed by a reaction with the appropriate amine. The synthesized compounds 711 and 2049 were evaluated along with four known anticancer compounds for their cytotoxic activity in human cancer cell lines: cervical (HeLa), nasopharyngeal (KB), breast (MCF-7), osteosarcoma (143B) (only selected compounds 20, 24, 28, 3236, 38, 40, 46) and normal human dermal fibroblast cell line (HDF) using the sulforhodamine B (SRB) assay. Among 3′-[4-aryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidines (711) the highest activity in all the investigated cancer cells was displayed by 3′-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3′-deoxythymidine (9) (IC50 in the range of 2.58–3.61?μM) and its activity was higher than that of cytarabine. Among phosphoramidates 2049 the highest activity was demonstrated by N-n-propyl phosphoramidate of 3′-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3′-deoxythymidine (35) in all the cancer cells (IC50 in the range of 0.97–1.94?μM). Also N-ethyl phosphoramidate of 3′-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3′-deoxythymidine (33) exhibited good activity in all the used cell lines (IC50 in the range of 4.79–4.96?μM).  相似文献   

13.
Inhibition of microtubule function using tubulin targeting agents has received growing attention in the last several decades. The indole scaffold has been recognized as an important scaffold in the design of novel compounds acting as antimitotic agents. Indole-based chalcones, in which one of the aryl rings was replaced by an indole, have been explored in the last few years for their anticancer potential in different cancer cell lines. Eighteen novel (3′,4′,5′-trimethoxyphenyl)-indolyl-propenone derivatives with general structure 9 were synthesized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines. The highest IC50 values were obtained against the human promyelocytic leukemia HL-60 cell line. This series of chalcone derivatives was characterized by the presence of a 2-alkoxycarbonyl indole ring as the second aryl system attached at the carbonyl of the 3-position of the 1-(3′,4′,5′-trimethoxyphenyl)-2-propen-1-one framework. The structure–activity relationship (SAR) of the indole-based chalcone derivatives was investigated by varying the position of the methoxy group, by the introduction of different substituents (hydrogen, methyl, ethyl or benzyl) at the N-1 position and by the activity differences between methoxycarbonyl and ethoxycarbonyl moieties at the 2-position of the indole nucleus. The antiproliferative activity data of the novel synthesized compounds revealed that generally N-substituted indole analogues exhibited considerably reduced potency as compared with their parent N-unsubstituted counterparts, demonstrating that the presence of a hydrogen on the indole nitrogen plays a decisive role in increasing antiproliferative activity. The results also revealed that the position of the methoxy group on the indole ring is a critical determinant of biological activity. Among the synthesized derivatives, compound 9e, containing the 2-methoxycarbonyl-6-methoxy-N-1H-indole moiety exhibited the highest antiproliferative activity, with IC50 values of 0.37, 0.16 and 0.17?μM against HeLa, HT29 and MCF-7 cancer cell lines, respectively, and with considerably lower activity against HL-60 cells (IC50: 18?μM). This derivative also displayed cytotoxic properties (IC50 values ~1?μM) in the human myeloid leukemia U-937 cell line overexpressing human Bcl-2 (U-937/Bcl-2) via cell cycle progression arrest at the G2-M phase and induction of apoptosis. The results obtained also demonstrated that the antiproliferative activity of this molecule is related to inhibition of tubulin polymerisation. The presence of a methoxy group at the C5- or C6-position of the indole nucleus, as well as the absence of substituents at the N-1-indole position, contributed to the optimal activity of the indole-propenone-3′,4′,5′-trimethoxyphenyl scaffold.  相似文献   

14.
15.
The present work describes the design and synthesis of a novel series of 1,3-diaryl-4-sulfonamidoarylpyrazole derivatives 1a–q and 2a–q and their in vitro biological activities. The target compounds were evaluated for antiproliferative activity against NCI-60 cell line panel. Compounds 1c, 1g, 1k–m, 1o, 2g, 2h, 2k–m, 2o, and 2q showed the highest mean inhibition percentages at 10 µM single-dose testing and were selected to be tested at 5-dose mode. The ICs50 of the most potent compounds were determined over the 60 cell lines. Compound 2l exhibited the strongest activity against different cell lines with IC50 0.33 µM against A498 renal cancer cell line. Compound 2l was tested over a panel of 20 kinases to determine its molecular target(s), and its IC50 values over the most sensitive kinases were defined. In vitro stability and in vivo pharmacokinetic profile of compound 2l was also investigated.  相似文献   

16.
Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6., 3′-Hydroxyepiglucoisatisin (3), Epiglucoisatisin (2) were found to be potent urease inhibitors in a concentration-dependent manner with IC50 values 25.63 ± 0.74, 37.01 ± 0.41 and 31.72 ± 0.93, 47.33 ± 0.31 μM against Bacillus pasteurii & Jack bean urease, respectively. Compounds 3 and 2 also showed potent inhibitory potential against α-chymotrypsin with IC50 values of 23.40 ± 0.21 and 27.45 ± 0.23 μM, respectively.  相似文献   

17.
A blunt-ended 19-mer short interfering hybrid (siHybrid) (H) comprised of sense-DNA/antisense-RNA targeting HER-2 mRNA was encapsulated in a liposomal nanoplex with anti-transferrin receptor single-chain antibody fragment (TfRscFv) as the targeting moiety for clinically relevant tumor-specific delivery. In vitro delivery to a human pancreatic cell line (PANC-1) was shown to exhibit sequence-specific inhibition of 48-h cell growth with an IC50 value of 37 nM. The inhibitory potency of this siHybrid was increased (IC50 value of 7.8 nM) using a homologous chemically modified siHybrid (mH) in which the 19-mer sense strand had the following pattern of 2 ′-deoxyinosine (dI) and 2 ′-O-methylribonucleotide (2 ′-OMe) residues: 5′-d(TITIT)-2′OMe(GCGGUGGUU)-d(GICIT). These modifications were intended to favor antisense strand-mediated RNAi while mitigating possible sense strand-mediated off-target effects and RNase H-mediated cleavage of the antisense RNA strand. The presently reported immunoliposomal delivery system was successfully used in vivo to inhibit HER-2 expression, and thus induce apoptosis in human breast carcinoma tumors (MDA-MB-435) in mice upon repeated i.v. treatment at a dose of 3 mg/kg of H or mH. The in vivo potency of modified siHybrid mH appeared to be qualitatively greater than that of H, as was the case in vitro.  相似文献   

18.
A series of novel 1,4-substituted semicarbazides 5a–g with a primaquine moiety bridged by a carbonyl group at position 1 and a cycloalkyl, aryl, benzyloxy or hydroxy substituent at position 4 were prepared and biologically evaluated. The synthetic pathways applied for preparation of the title compounds involved benzotriazole as synthetic auxiliary. Primaquine semicarbazides 5a–g and their synthetic precursors benzotriazolecarbonyl semicarbazides 4 were evaluated for cytostatic, antiviral and antioxidative activities. All compounds of the series 5 showed high selectivity towards MCF-7 cells (breast carcinoma) with IC50 values in the low micromolar range and the most active was benzyl derivative 5c (IC50 1?±?0.2 µM). The benzhydryl derivative 5e showed significant cytostatic activities towards all the tested cell lines (IC50 4–18 µM). The same compound was the strongest lipoxygenase inhibitor as well (51%). The highest antioxidant activity was demonstrated for the hydroxy derivative 5g and benzotriazolecarbonyl semicarbazides 4b,c (61.2–68.5%). No antiviral activity was observed against a wide variety of DNA and RNA viruses.  相似文献   

19.
A series of sulfonyl hydrazones derived from 3-formylchromone was synthesized and discovered to be effective, non-selective inhibitors of monoamine oxidases (MAO-A and MAO-B). The compounds are easily (synthetically) accessible in high yields, by simple condensation of 4-methylbenzenesulfonohydrazide with different (un)substituted 3-formylchromones. All compounds had IC50 values in lower micro-molar range (IC50 = 0.33–7.14 μM for MAO-A, and 1.12–3.56 μM for MAO-B). The most active MAO-B inhibitor was N′-[(E)-(6-fluoro-4-oxo-4H-chromen-3-yl)methylidene]-4-methylbenzenesulfonohydrazide (3e) with IC50 value of 1.12 ± 0.02 μM, and N′-[(E)-(6-chloro-4-oxo-4H-chromen-3-yl)methylidene]-4-methylbenzenesulfonohydrazide (3f) was the most active MAO-A inhibitor with IC50 value of 0.33 ± 0.01 μM. From enzyme kinetic studies, the mode of inhibition against MAO-B was found to be competitive, whereas against MAO-A, it was found to be non-competitive. Molecular docking studies indicated a new binding pocket for non-competitive MAO-A inhibitors. The activity of these compounds is optimally combined with highly favorable ADME profile with predicted good oral bioavailability.  相似文献   

20.
A new series of functionalized amino acid derivatives N-substituted 1-N-(tert-butoxycarbonyl)-2,2-dimethyl-4-phenyl-5-oxazolidine carboxamide (1-17) and 1-N-substituted-3-amino-2-hydroxy-3-phenylpropane-1-carboxamide (18-34) were synthesized and evaluated for their in vitro cytotoxicity against human cancer cell lines. Compound 6 has shown interesting cytotoxicity (IC50 = 5.67 μm) in ovarian cancer, while compound 10 exhibited promising cytotoxicity in ovarian (IC50 = 6.1 μm) and oral (IC50 = 4.17 μm) cancers. These compounds could be of use in designing new anti-cancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号