首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The oxidation of purine derivatives using porphyrins as catalysts and dimethyldioxirane (DMDO) as oxygen atom donor is reported. The regioselectivity of the oxidation was found to be dependent on the presence of a free OH moiety on the N(9)-side chain of the substrate and on the structure of the catalyst.  相似文献   

2.
The commercialization of fuel cell technologies requires a significant reduction in the amount of expensive platinum catalyst in the cathode while still maintaining high catalytic activity and stability. Herein a cost‐effective, highly durable, and efficient catalyst consisting of ordered Fe3Pt nanoparticles supported by mesoporous Ti0.5Cr0.5N (Fe3Pt/Ti0.5Cr0.5N) is demonstrated. The Fe3Pt/Ti0.5Cr0.5N catalyst exhibits a five‐fold increase in mass activity relative to a Pt/C catalyst at 0.9 V for the oxygen reduction reaction. More importantly, the catalyst shows a minimal loss of activity after 5000 potential cycles (9.7%). The enhanced activity of the ordered Fe3Pt/Ti0.5Cr0.5N catalyst, in combination with its enhanced stability, makes it very promising for the development of new cathode catalysts for fuel cells.  相似文献   

3.
The reactivity of Amberlite (IRA-67) base “heterogeneous” resin in Sonogashira cross-coupling of 8-bromoguanosine 1 with phenylacetylene 3 to give 2 has been examined. Both 1 and 2 coordinate to Pd and Cu ions, which explains why at equivalent catalyst loadings, the homogeneous reaction employing triethylamine base is poor yielding. X-ray photo-electron spectroscopy (XPS) has been used to probe and quantify the active nitrogen base sites of the Amberlite resin, and postreaction Pd and Cu species. The PdCl2(PPh3)2 precatalyst and CuI cocatalyst degrade to give Amberlite-supported metal nanoparticles (average size ~2.7 nm). The guanosine product 2 formed using the Amberlite Pd/Cu catalyst system is of higher purity than reactions using a homogeneous Pd precatalyst, a prerequisite for use in biological applications.  相似文献   

4.
A series of 2′ and 4′‐doubly branched carbocyclic nucleosides 15, 16, 17 and 18 were synthesized starting from simple acyclic ketone derivatives. The required 4′‐quaternary carbon was constructed using Claisen rearrangement. In addition, the installation of a methyl group in the 2′‐position was accomplished using a Grignard carbonyl addition of isopropenylmagnesium bromide. Bis‐vinyl was successfully cyclized using a Grubbs’ catalyst II. Natural bases (adenine, cytosine) were efficiently coupled by using Pd(0) catalyst.  相似文献   

5.
《Plant Ecology & Diversity》2013,6(5-6):521-528
Background: Plant and soil nitrogen stable isotope (δ15N) can integrate several fundamental biogeochemical processes in ecosystem nitrogen dynamics, and reflect characteristics of ecosystem nitrogen cycling.

Aims: We investigated how climate change influenced plant-soil nitrogen cycling by relating soil δ15N, plant δ15N and Δδ15N (difference between soil and plant δ15N) with climatic factors.

Methods: Field investigation was conducted in temperate grasslands in Inner Mongolia during August 2015. Plant δ15N, soil δ15N and Δδ15N were determined, and their relationships with climatic factors were examined by simple regression analyses and general linear models.

Results: Soil δ15N was significantly higher than plant δ15N, and there was a positive linear correlation between them. Soil and plant δ15N were negatively related with mean annual precipitation (MAP) and positively with mean annual temperature (MAT); conversely, Δδ15N was positively related with MAP and negatively with MAT.

Conclusion: Soil δ15N was dominantly controlled by MAT, while it was MAP for plant δ15N. Climate factors influenced plant δ15N not only through their effects on soil nitrogen dynamics but also strategies of plant nitrogen acquisition. Thus, compared with plant δ15N, soil δ15N can more accurately reflect soil nitrogen dynamics, while plant δ15N may integrate soil nitrogen dynamics and plant nitrogen acquisition.  相似文献   

6.
《Plant Ecology & Diversity》2013,6(2-3):131-140
Background: Nitrogen fixation has been quantified for a range of crop legumes and actinorhizal plants under different agricultural/agroforestry conditions, but much less is known of legume and actinorhizal plant N2 fixation in natural ecosystems.

Aims: To assess the proportion of total plant N derived from the atmosphere via the process of N2 fixation (%Ndfa) by actinorhizal and legume plants in natural ecosystems and their N input into these ecosystems as indicated by their 15N natural abundance.

Methods: A comprehensive collation of published values of %Ndfa for legumes and actinorhizal plants in natural ecosystems and their N input into these ecosystems as estimated by their 15N natural abundance was carried out by searching the ISI Web of Science database using relevant key words.

Results: The %Ndfa was consistently large for actinorhizal plants but very variable for legumes in natural ecosystems, and the average value for %Ndfa was substantially greater for actinorhizal plants. High soil N, in particular, but also low soil P and water content were correlated with low legume N2 fixation. N input into ecosystems from N2 fixation was very variable for actinorhizal and legume plants and greatly dependent on their biomass within the system.

Conclusions: Measurement of 15N natural abundance has given greater understanding of where legume and actinorhizal plant N2 fixation is important in natural ecosystems. Across studies, the average value for %Ndfa was substantially greater for actinorhizal plants than for legumes, and the relative abilities of the two groups of plants to utilise mineral N requires further study.  相似文献   

7.
Background and aims

Plants differ in their ability to use different nitrogen (N) chemical forms, these differences can be related to their ecology and drive community structure. The capacity to uptake intact organic N has been observed in plants of several ecosystems. However, soil organic N uptake by Mediterranean plants is unknown despite organic N being abundant in Mediterranean ecosystems. We compare the uptake of different N forms in two widespread coexisting Mediterranean forest trees with contrasting ecophysiological characteristics: Quercus ilex and Pinus halepensis.

Methods

To estimate root uptake rate of each N form we used equimolar solutions (1 mM N) of 15NO3 ?, 15NH4 + and 15N-13C glycine.

Results

NH4 + and glycine were taken up at a similar rate, but faster than NO3 ? in both species. Intact dual labeled glycine was found in both species, demonstrating that both species can absorb intact organic N.

Conclusions

Despite their ecological differences, both species had similar preference for N forms suggesting no fundamental niche complementarity for N uptake. The higher preference for NH4 + and glycine over NO3 ? possibly reflects adaptation to the differing proportions of N forms in Mediterranean soils.

  相似文献   

8.
Background: Nitrogen (N) deposition in the Front Range of the southern Rocky Mountains has been increasing for several decades, and has exceeded the critical load for several ecological metrics.

Aims: Our objective was to predict potential future ecological changes in alpine zones in response to anthropogenic N deposition based on a review of research from Niwot Ridge, Colorado.

Results: Empirical observations and experimental studies indicate that plant, algal and soil microbe species compositions are changing in response to N deposition, with nitrophilic species increasing in abundance. Biotic sequestration of N deposition is insufficient to compensate for greater nitrate production, leading to the potential for acidification and base cation loss.

Conclusions: Changes in biotic composition in both terrestrial and aquatic ecosystems have important impacts on ecosystem functioning, including a lower capacity to take up and neutralise the acidifying effect of anthropogenic N, increasing phosphorus limitation of production in terrestrial and aquatic systems, and shifts in rates of N and carbon cycling. Continued elevated N deposition rates coupled with ongoing climate change, including warmer summer temperatures and lower snow cover of shorter duration, will influence the ecological thresholds for biotic and functional changes. We suggest that these thresholds will occur at lower inputs of N deposition under future climate change, meriting reconsideration of current N critical loads to protect sensitive alpine ecosystems.  相似文献   

9.
Abstract

Fusion of the glycal 3 and purines/pyrimidines without acid catalyst provides anomeric mixtures of the 2′,3′-unsaturated pentopyranosyl nucleosides 4, which have been worked out to furnish the 3′-hydroxymethyl analogues, e.g. 5.  相似文献   

10.
Background: The complementary use of different forms of soil nitrogen (N) might lead to a higher productivity of mixed forests than monocultures, but convincing evidence for temperate mixed forests is scarce.

Aims: We searched for species differences in N uptake rates and the preference for NH4+, NO3? or glycine among five temperate broad?leaved tree species (Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia cordata) in a mature mixed stand.

Methods: 15N tracer was added to the soil and its accumulation in fine root biomass was analysed after 10 min, 1 h and 1 d.

Results: The estimated root uptake rates of the species were in the range of 5–46 µg N g?1 root h?1 for NH4+, 6–86 µg N g?1 h?1 for NO3? and 4–29 µg N g?1 h?1 for glycine during the first hour after tracer application. Carpinus, Tilia and Acer tended to prefer NH4+ over NO3?, while Fraxinus showed equal preference for both N forms and Fagus seemed to prefer NO3?.

Conclusions: The five co-existing tree species differed in uptake rates and partly in their N form preference, but complementarity in the use of different N forms seems to be of minor importance in this forest because tree species appear to be rather flexible in their N form use.  相似文献   

11.
Tribouillois  Hélène  Cohan  Jean-Pierre  Justes  Eric 《Plant and Soil》2016,401(1-2):347-364
Background and aims

During the fallow period, non-legume cover crop species can capture mineral nitrogen (N) and thus decrease nitrate leaching, whereas legume cover crop species can provide a green manuring service that increases N availability for the subsequent crop. The aim of our study was to investigate the ability of bispecific mixtures to simultaneously produce these two services of N management in relation to their interspecific interactions.

Methods

Three field experiments were conducted at contrasting sites from summer to autumn to evaluate 25 mixtures and 10 sole crops. We measured biomass, N acquisition, C:N ratio and soil mineral N. Ecosystem services were assessed using both experimental data and simulation model predictions.

Results

Overall, prediction of N mineralized from cover crop residues was significantly higher for mixtures than for non-legume sole crops. Predictions of nitrate leached after mixtures did not differ significantly from those after non-legume sole crops and remained significantly lower than those under bare soil, especially for mixtures with turnip rape which benefitted greatly from being in mixtures.

Conclusions

Some of the mixtures provided a choice of compromises between the two ecosystem services, which helps define solutions for adapting mixture choice according to the site’s soil and climate characteristics and to fallow period management.

  相似文献   

12.
The exomethylene of 6 was successfully constructed from the aldehyde 5 using Eschenmoser's reagents. A triene compound 7 was cyclized successfully using Grubbs’ II catalyst to give an exomethylene carbocycle nucleus for the target compound. A Mitsunobu reaction was successfully used to condense the natural bases (adenine, thymine, uracil, and cytosine). The synthesized cytosine analogue 20 showed moderate anti-HIV activity (EC50 = 10.67 μM).  相似文献   

13.
Oligonucleotides containing 7-deaza-2′-deoxyxanthosine (1) and 2′-deoxyxanthosine (2) were prepared. The 2-(4-nitrophenyl)ethyl group is applicable for 7-deazaxanthine protection that is removed with DBU by β-elimination, while the deprotection of the allyl residue with Pd (0) catalyst failed. Contrarily, the allyl group was found to be an excellent protecting group for 2′-deoxyxanthosine (2). The base pairing of nucleosides 1 and 2 with the four canonical DNA constituents as well as with 3 within the 12-mer duplexes is studied.  相似文献   

14.
Background and Aims: High elevation treelines occur worldwide at similar mean growing season temperatures. Does this result from direct impact of low temperature on growth or carbon metabolism, or does nutrient limitation, induced by low soil temperature, play a role? Similar treeline elevations at contrasting soil fertility argue against the latter, but the actual nutritional status of treeline trees (here addressed as foliage nitrogen concentration) has never been assessed systematically. Although needle nitrogen (N) concentration does not necessarily indicate growth limitation by N, the relative abundance of N would indicate obvious depletions at the treeline.

Methods: A central problem with any foliage nutrient assay is that the units for describing the element concentration are dependent on elevation themselves. Here we separate changes in N per unit tissue from changes in reference units.

Results: Needles of Pinus cembra and Picea abies in the Alps do not show elevational differences in N concentration per dry weight, water content, area or volume, thus, there is no N depletion near the elevational tree limit. Hence, nutrient supply is either unaltered, or growth is adjusted so that nutrient depletion in needle tissue does not occur.

Conclusions: Chronic N shortage at needle level is not an explanation for low tree vigour at the treeline.  相似文献   

15.
Abstract

An effective method for the synthesis of acyclonucleosides is reported. It is based on the use of potassium iodide as catalyst which enables mild condensation conditions.  相似文献   

16.
A Middle–Late Eocene diagnostic larger foraminiferal assemblage is described and illustrated from carbonates of the uppermost Dammam Formation, on both sides of Gebel Hafit anticline in the Northern Oman Mountains in the United Arab Emirates. The Middle Eocene carbonates yielded Nummulites obesus d'Archiac, 1852, N. ismaili Boukhary, Hamdan & Bahr n. sp., N. papazzonii Boukhary, Hamdan & Bahr n. sp. and N. kenawyi Boukhary, Hamdan & Bahr n. sp. (a species of the N. burdigalensis group). In addition, N. cf. boussaci Rozlozsnik, 1924, N. cf. lorioli De La Harpe, 1879, N. hottingeri Schaub, 1981, N. strougoi Boukhary, Hamdan & Bahr n. sp. (of the N. partschi group), N. ansaryi Boukhary, Hamdan & Bahr n. sp. (of the N. gizehensis group), N. cf. praebullatus Schaub, 1981, N. cizancourti Sander, 1962 (of the group of N. fabianii), N. cf. stamineus Nuttall, 1927 (of the N. discorbinus group), N. maculatus Nuttall, 1926 (of the N. laevigatus group) and Assilina gigantea De La Harpe, 1926 are recorded. On the top of the sequence, an assemblage with N. hottingeri Schaub, 1981, which was assigned by Schaub 1981 to the Biarritzian ( = Bartonian), was found associated with N. ptukhiani, Silvestriella tetraedra (Gümbel, 1870) and Pellatispira madaraszi (Hantken, 1875); these findings suggest that this association should be assigned to the Priabonian stage, confirming for the sampled succession of a Late Eocene age for sediments deposited in an inner-shelf environment, which was possibly related to the eustatic fall of sea level at the end of the Priabonian.

http://zoobank.org/2EBD2891-293F-465A-AE1C-F419F0CDB970  相似文献   

17.
He  Xiao Lin  Fan  Shi Kan  Zhu  Jun  Guan  Mei Yan  Liu  Xing Xing  Zhang  Yong Song  Jin  Chong Wei 《Plant and Soil》2017,412(1-2):453-464
Background

Anthropogenic nitrogen (N) addition has dramatically increased and significantly affected global nitrogen cycling. The natural abundance of stable N isotope ratios (δ15N) has been used as an indicator of the N status of an ecosystem. However, how plant and soil δ15N signatures would respond to N addition is still unclear.

Methods and aims

Herein, we synthesized the data of 951 observations from 48 individual studies associated with responses of plant and soil δ15N values to N addition and conducted a meta-analysis to explore a general pattern of N addition effects on δ15N values of plant and soil.

Results

Our results showed that δ15N values of plant, soil total N, and soil NO3 ? were significantly increased by N addition, while δ15N value of soil N2O was significantly decreased and δ15N value of soil NH4 + was not significantly changed. The δ15N value of soil total N of different ecosystems showed similar responses to N addition, whereas δ15N values of different plant types showed different responses. Increasing treatment duration significantly increased the effects of inorganic N addition on δ15N values of shrubs and soil NH4 + but did not affect the responses of δ15N values of soil total N and NO3 ?. With increasing inorganic N addition rate, only δ15N value of plant was significantly increased, but no significant relationship was found between the effect of N addition on other components and N addition rate because of the input of isotopically depleted sources.

Conclusions

Our study revealed a comprehensive picture of the effects of N addition on δ15N signatures in terrestrial ecosystems and could help us understand how plant and soil δ15N signatures change with N addition and how these signatures can be used as an indicator of ecosystem N status under increasing N deposition or fertilization.

  相似文献   

18.
A convenient method for the ‘one-pot’ synthesis of novel target molecule 2,7-diaryl-[1,4]-diazepan-5-ones from the respective 2,6-diaryl-piperidin-4-ones was catalyzed by NaHSO4.Al2O3 heterogeneous catalyst in dry media under microwave irradiation in solvent-free conditions. Moreover, the catalyst could be recovered and re-used up to 4 times after washing with ethyl acetate. They were evaluated for potential antibacterial activity against Staphylococcus aureus, β-Haemolytic streptococcus, Vibreo cholerae, Salmonella typhii, Escherichia coli, Klebsiella pneumonia, Pseudomonas and antifungal activity against Aspergillus flavus, Aspergillus fumigatus, Mucor, Candida albicans and Rhizopus. Structure-Activity Relationship (SAR) led to the conclusion that, of all the compounds 25–32 tested, compound 30 exerted strong in vitro antibacterial activity against S. aureus, S. typhii, and Pseudomonas and all the compounds 25–32 were less active against E. coli, whereas all the compounds 25–32 displayed potent in vitro antifungal activity against all the fungal strains used, except compound 30, which was more effectual against Mucor.  相似文献   

19.
A new genus of Picramniaceae from tropical America, Nothotalisia, is described. Of the three species in the genus, N. piranii and N. cancellata, are new to science. The third, N. peruviana, was originally described as Talisia peruviana in the Sapindaceae. The genus and all three species are described, illustrated, and distinguished by means of a key.  相似文献   

20.
Background and AimsThe utility of root hairs for nitrogen (N) acquisition is poorly understood.MethodsWe explored the utility of root hairs for N acquisition in the functional–structural model SimRoot and with maize genotypes with variable root hair length (RHL) in greenhouse and field environments.Key ResultsSimulation results indicate that long, dense root hairs can improve N acquisition under varying N availability. In the greenhouse, ammonium availability had no effect on RHL and low nitrate availability increased RHL, while in the field low N reduced RHL. Longer RHL was associated with 216 % increase in biomass and 237 % increase in plant N content under low-N conditions in the greenhouse and a 250 % increase in biomass and 200 % increase in plant N content in the field compared with short-RHL phenotypes. In a low-N field environment, genotypes with long RHL had 267 % greater yield than those with short RHL. We speculate that long root hairs improve N capture by increased root surface area and expanded soil exploration beyond the N depletion zone surrounding the root surface.ConclusionsWe conclude that root hairs play an important role in N acquisition. We suggest that root hairs merit consideration as a breeding target for improved N acquisition in maize and other crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号