首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emphasis was placed in this work on the assessment of structural and biological features of nucleobase adducts that result from the reaction of DNA with epoxide derivatives. Thus we have prepared and characterized a set of site-specifically modified oligonucleotides at N7-position of a guanine residue, upon reaction with diepoxibutane, with the purpose of further investigating some of their biochemical features. The stability of the lesion-containing DNA fragments has also been investigated and clearly shows that the latter modified oligomers may be used as substrates for in vitro enzymatic assays, aimed at determining the biological effects within cell of these chemically induced DNA damage.  相似文献   

2.
《Free radical research》2013,47(4-6):259-270
Using the pulse radiolysis technique, we have demonstrated that bleomycin-Fe(III) is stoichiometrically reduced by CO2? to bleomycin-Fe(II) with a rate of (1.9 ± 0.2) × 108M?1s?1. In the presence of calf thymus DNA, the reduction proceeds through free bleomycin-Fe(III) and the binding constant of bleomycin-Fe(III) to DNA has been determined to be (3.8 ± 0.5) x 104 M?1. It has also been demonstrated that in the absence of DNA O2?1 reacts with bleomycin-Fe(III) to yield bleomycin-Fe(II)O2, which is in rapid equilibrium with molecular oxygen, and decomposes at room temperature with a rate of (700 ± 200) s?1. The resulting product of the decomposition reaction is Fe(III) which is bound to a modified bleomycin molecule. We have demonstrated that during the reaction of bleomycin-Fe(II) with O2, modification or self-destruction of the drug occurs, while in the presence of DNA no destruction occurs, possibly because the reaction causes degradation of DNA.  相似文献   

3.
Lactose repressor protein has been modified with N-ethylmaleimide, two N-maleimide spin labels, and an N-maleimide fluorophore. The reaction with repressor cysteine residues has been characterized. Approximately 2 of the 3 eq of cysteine/repressor monomer are reactive toward these reagents. Repressor cysteines are reactive toward these reagents in the order cysteine 140 greater than or equal to cysteine 107 greater than cysteine 281. The reaction is sulfhydryl-specific. Comparison of chemical modification data obtained in this laboratory using a variety of sulfhydryl-specific reagents has been used to assess chemical features of individual cysteine environments. Effects of the maleimide reagents on biological activity have been determined. Only the fluorophore N-(3-pyrene)maleimide has significant effect; this agent selectively perturbs repressor's ability to bind to operator DNA. This result suggests that regions of protein structure surrounding 1 or more of the cysteine residues possess determinants required for normal operator DNA binding.  相似文献   

4.
An improved procedure is described for the separation and quantitation of DNA from biological samples. Following papain digestion, DNA was separated from other cell material with CdCl2 precipitation onto a glass-fiber filter and quantitated easily by the modified diphenylamine reaction.  相似文献   

5.
We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples.  相似文献   

6.
Emphasis was placed in this work on the assessment of biological features of 2,2,4-triaminooxazolone, a major one-electron and ·OH-mediated oxidation product of guanine. For this purpose, two oligonucleotides that contain a unique oxazolone residue were synthesized. Herein we report the mutagenic potential of oxazolone during in vitro DNA synthesis and its behavior towards DNA repair enzymes. Nucleotide insertion opposite oxazolone, catalyzed by Klenow fragment exo and Taq polymerase indicates that the oxazolone lesion induces mainly dAMP insertion. This suggests that the formation of oxazolone in DNA may lead to G→T transversions. On the other hand, oxazolone represents a blocking lesion when DNA synthesis is performed with DNA polymerase β. Interestingly, DNA repair experiments carried out with formamidopyrimidine DNA N-glycosylase (Fpg) and endonuclease III (endo III) show that oxazolone is a substrate for both enzymes. Values of kcat/Km for the Fpg-mediated removal of oxidative guanine lesions revealed that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than oxazolone. In the case of endo III-mediated cleavage of modified bases, the present results suggest that oxazolone is a better substrate than 5-OHC, an oxidized pyrimidine base. Finally, MALDI-TOF-MS analysis of the DNA fragments released upon digestion of an oxazolone-containing oligonucleotide by Fpg gave insights into the enzymatic mechanism of oligonucleotide cleavage.  相似文献   

7.
Ian Y. Wong 《Biophysical journal》2010,98(12):2954-2963
DNA hybridization at surfaces is a crucial process for biomolecular detection, genotyping, and gene expression analysis. However, hybridization density and kinetics can be strongly inhibited by electric fields from the negatively charged DNA as the reaction proceeds. Here, we develop an electrostatic model to optimize hybridization density and kinetics as a function of DNA surface density, salt concentrations, and applied voltages. The electrostatic repulsion from a DNA surface layer is calculated numerically and incorporated into a modified Langmuir scheme, allowing kinetic suppression of hybridization. At the low DNA probe densities typically used in assays (<1013/cm2), electrostatics effects are largely screened and hybridization is completed with fast kinetics. However, higher hybridization densities can be achieved at intermediate DNA surface densities, albeit with slower kinetics. The application of positive voltages circumvents issues resulting from the very high DNA probe density, allowing highly enhanced hybridization densities and accelerated kinetics, and validating recent experimental measurements.  相似文献   

8.
Metabolic activation of drugs frequently generates electrophilic products that may undergo covalent binding to biological macromolecules, such as proteins and DNA. The resulting covalent adducts are of considerable concern in drug discovery and development. Several strategies for assessing the potential risks of candidate drugs have been reported. Of these, glutathione trapping is the most commonly used method together with mass spectrometry. Furthermore, drug-mediated protein modifications have been studied using serum albumin and CYP enzymes to clarify target amino acids and mechanism-based inhibition, respectively. In this article, we introduce a practical way to screen drug-mediated protein modifications. The method, referred to as “predicted multiple selected reaction monitoring,” is based on the selected reaction monitoring (SRM) strategy, but targets all possible chemically modified tryptic peptides. The creation of SRM lists may require patience; however, this strategy could facilitate more sensitive screening compared with the common strategy of data-dependent product ion scanning. Ketoprofen-N-hydroxysuccinimidyl ester (equivalent to glucuronide) and N-acetyl-p-benzoquinone imine (NAPQI) were allowed to react with human serum albumin as a model experiment. Using this strategy, 11 ketoprofen-adduction sites (at Lys137, 195, 199, 212, 351, 402, 432, 436, 525, 536, and 541) and 1 NAPQI-adduction site (at Cys34) were easily identified.  相似文献   

9.
The ability of cellular DNA repair enzymes, which are active on ultraviolet light-induced lesions in DNA, to recognize and repair damage induced in DNA by exposure to carcinogenic polycylic hydrocarbons was investigated and the effect of such repair processes on the mutagenicity of the hydrocarbons determined. The carcinogenic hydrocarbos, 7-bromomethylbenz[a]anthracene (7-BrMeBA) and 7-bromomethyl-12-methylbenz[a]anthracene (7-BrMe-12-MeBA), chosen for this study because they form well characterized, stable products with DNA, were dissolved at various concentrations in acetone, added under mild conditions to biologically active DNA isolated from Bacillus subtilis, and the reaction stopped by ethanol precipitation. The hydrocarbons were determined by specific radioactivity to be covalently linked to DNA at a frequency of from 1–5 per 1000 nucleotides. An increased frequency of bound hydrocarbon molecules was directly correlated with a decrease in the buoyant density of the DNA as measured in analytical CsCl centrifugation studies. The samples of hydrocarbon-bound DNA were tested for survival of biological activity and for the frequency of induced forward mutations in two recipient strains (hcr+ and hcr?) of Bacillus subtilis which differ in their ability to repair ultraviolet light-induced lesions in DNA. The survival of the biological activity was significantly higher in the repairing strain (hcr+). A higher frequency of mutations was detected in the repairing strain as well. The loss of transforming activity and the increase in the frequency of mutations (up to 20-fold) was directly proportional to the amount of hydrocarbon bound to the DNA samples. The majority of these mutations proved unable to revert spontaneously. Finally, the ability of highly purified rat liver endonuclease, shown to recognize lesions in UV-irradiated DNA, to recognize such hydrocarbon lesions was investigated. Tritiated 7-BrMeBA-treated DNAs exposed to the enzyme were found to sustain single-strand nicks in proportion to the amount of hydrocarbon bound while untreated DNA remained substantially intact. The action of the endonuclease appeared to result in an increase in the biological activity of DNA containing hydrocarbon residues when this was assayed in the hcr? mutant.  相似文献   

10.
Y Uchimura  H Ishida  K Asada  H Mukai  I Kato 《Gene》1991,108(1):103-108
We developed a modified nonradioactive method for the detection of DNA. This method makes use of the polymerase chain reaction for preparation of probes; that is, a DNA fragment inserted in the polylinker region of an M13 or pUC vector is amplified with primers that have a modified cytosine tail at the 5' terminus (C-tailed primers). By this method, large amounts of labeled probes can be obtained easily. After hybridization, modified cytosine tails can be detected immunologically. DNA labeled by this method could be used in plaque hybridization. We could detect 0.05 pg of dot-blotted labeled DNA in 30 min with an enzyme-catalyzed chemiluminescence reaction.  相似文献   

11.
Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information1, they can be utilized in parallel computing2,3 , recognize and bind molecular or cellular targets4,5 , catalyze chemical reactions6,7 , and generate calculated responses in a biological system8,9. Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures10-12, enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect.Creating shapes from nucleic acids was first proposed by Seeman13, and several variations on this theme have since been realized using various techniques11,12,14,15 . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami16. In this technique, the folding of a long (>7,000 bases) single-stranded DNA ''scaffold'' is directed to a desired shape by hundreds of short complementary strands termed ''staples''. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well17,18 .The current paper will focus on the caDNAno 2.0 software19 developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient.In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described20. This robot is ''robotic'' in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect. Finally we use Cando21 to simulate the mechanical properties of the designed shape. The concept we discuss can be adapted to multiple tasks and settings.  相似文献   

12.
Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.  相似文献   

13.
R F Hartman  G L Brown  S D Rose 《Biopolymers》1981,20(12):2635-2648
An azo pyrimidine nucleotide has been prepared and enzymatically attached to oligo(A) primers. The nucleotide's azo pyrimidine group has previously been shown to initiate polymerization of methacrylate esters designed to bind marker groups for visualization by microscopy. When attached to RNA molecules complementary to a chromosomal DNA segment, these nucleotides may allow localization of the DNA segment following in situ hybridization of the probe, methacrylate polymerization, and marker attachment. Since mRNA molecules of potential interest as probes bear a 3′-poly(A) tail, the modified nucleotides were added to oligo(A) primers as models. First, N4-ureidocytosine nucleotides were enzymatically added to ApApA, (Ap)9A, or [5′-32P]-(pA)10, using the modified cytidine 5′-diphosphate and “primer-dependent” polynucleotide phosphorylase (M. luteus). In the case of the ApApA-primed reaction, the N4-ureidocytosine nucleotides in the product polynucleotide were converted into azo nucleotides by oxidation with N-bromosuccinimide. The other two primers were employed to study the time course of polynucleotide formation and to verify that primer was indeed being utilized by the enzyme. The suitability of the modified nucleotide for in situ hybridization studies was examined. Poly(N4-ureidocytidylic acid) was prepared from poly(C) and semicarbazide by the bisulfite-catalyzed transamination reaction. It was found that 95% of the N4-ureidocytosine nucleotides in this polynucleotide survive the elevated temperatures typically required for DNA:DNA denaturation and RNA:DNA annealing. When poly(N4-ureidocytidylic acid) was mixed with poly(I) in buffered aqueous salt solutions, no evidence for hybridization was found, so binding of the probe RNA to the denatured chromosomal DNA molecule via the modified nucleotides is not expected. Upon oxidation of poly(N4-ureidocytidylic acid) with N-bromosuccinimide, the azo nucleotides were formed, as judged by the appearance of a characteristic peak at approximately 350 nm in the uv-absorption spectrum of the yellow-orange product, azoRNA. The azo nucleotides in azoRNA exhibited the expected acid lability, which is known to be accompanied by 1-glyceryl methacrylate polymerization in the case of the simple azo pyrimidine. Because 1-glyceryl metharcylate bears substituent glycol groups for attaching heavy atoms or fluorescent markers, it is possible that probe RNA molecules bearing azo nucleotides may be useful for localizing low-multiplicity genes along eukaryotic chromosomes.  相似文献   

14.
5-Hydroxyuracil is a major oxidized nucleobase that can be generated by the action of OH radical and one-electron oxidants. The latter modified base that exhibits a low ionization potential is highly susceptible to further degradation upon exposure to various oxidants. Emphasis was placed in thiswork on the formation and characterization of one-electron oxidation products of 5-hydroxyuracil within DNA fragments of defined sequence. For this purpose, 5-hydroxyuracil containing single- and double-stranded oligonucleotides of various lengths were synthesized and then exposed to the oxidizing action of iridium salts. Isodialuric acid was found to be formed almost quantitatively by a one-electron oxidation mechanism for which relevant information was inferred from a freeze-quenched ESR study. Information on the stability of isodialuric acid thus formed and its conversion products in aqueous solutions was also gained from experiments performed at acidic, neutral and alkali pH’s. Moreover, biochemical features dealing with the substrate specificity of several bacterial and yeast base excision repair enzymes to remove isodialuric acid from site-specifically modified DNA fragments were determined.  相似文献   

15.
The interaction of bleomycin A2 with rat lung microsomes results in bleomycin-mediated DNA chain breakage due to the mixed-function oxidase catalyzed activation of bleomycin. This study demonstrates that the addition of exogenous Fe3+ significantly enhances the bleomycin-mediated cleavage of DNA deoxyribose, that the enhancing effect of Fe3+ is maximum when a 1:1 ratio of bleomycin to Fe3+ is achieved and that either NADPH or NADH can serve as pyridine cofactors for this reaction. Since the activation of bleomycin can be facilitated by iron in the Fe2+ form, these observations support the hypothesis that the mixed-function oxidase system may serve to maintain either adventitious or exogenous iron in the Fe2+ form. In the absence of DNA, the interaction of bleomycin with rat lung microsomes results in the self-inactivation of bleomycin, a reaction which is also enhanced by the addition of exogenous Fe3+. Thus, the microsomal mixed-function oxidase system represents an efficient biological system for the ‘activation-inactivation’ of bleomycin.  相似文献   

16.
The rodent carcinogens dimethylcarbamyl chloride (DMCC) and diethylcarbamyl chloride (DECC) react with dGuo (pH 7.0–7.5, 37°C, 4 h) to form the O6-acyl derivatives 6-dimethylcarbamyloxy-2′-deoxyguanosine (6-DMC-dGuo) and 6-diethylcarbamyloxy-2′-deoxyguanosine (6-DEC-dGuo), respectively. Reaction of DMCC with dThd under identical conditions yielded 4-dimethylamino-thymidine (4-DMA-dThd). Compounds 6-DMC-dGuo and 6-DEC-dGuo undergo a nucleophilic aromatic substitution reaction with dimethylamine (DMA) to form 6-dimethylamino-2′-deoxyguanosine (6-DMA-dGuo) via displacement of the C-6 dialkylcarbamyloxy moiety. The substitution reaction did not take place when diethylamine or NH3 were substituted for DMA. The structures of the new compounds 6-DMC-dGuo, 6-DEC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were deduced from chemical analyses and syntheses, UV and nuclear magnetic resonance (NMR) spectra and electron impact, isobutane chemical ionization and source insertion isobutane chemical ionization mass spectra. It was postulated that 4-DMA-dThd was formed following reaction of the transient intermediate 4-DMC-dThd with DMA formed by hydrolysis of DMCC. Calf thymus DNA was reacted in vitro with DMCC (pH 7.0–7.5, 37°C, 4 h) and the modified DNA hydrolyzed enzymatically to 2′-deoxynucleosides. Compounds 6-DMC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were identified in the hydrolysate by high-pressure liquid chromatography (HPLC). In an indentical manner 6-DEC-dGuo was identified following in vitro reaction of DECC with calf thymus DNA. Compounds 6-DEC-dGuo and 6-DMC-dGuo possess novel structures with respect to the types of adducts known to be formed between carcinogens and bases in DNA. The implications of these findings with respect to chemical mutagenesis and carcinogenesis is discussed. The structural relationship between N4-dimethyl-5-methylcytosine (4-dimethylamino-Thy) formed in DNA following in vitro reaction with DMCC and 5-methylcytosine, the only modified base found in vertebrate DNA is noted.  相似文献   

17.
18.
The transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3′ ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides. It was shown that the best DNA tailing substrate does not have a perfect Watson–Crick base pair at the end. Mismatched duplexes with a 3′ dC were the most efficient in the Taq DNA polymerase-catalysed tailing reaction with a Cy5-modified dUTP. We further demonstrated that the arrangement of the dye residue relative to the nucleobase notably affects the outcome of the tailing reaction. A comparative study of labelled deoxycytidine and deoxyuridine nucleotides showed higher efficiency for dUTP derivatives. The non-templated addition of modified nucleotides by Taq polymerase at a duplex blunt end was generally complicated by the pyrophosphorolysis and 5′ exonuclease activity of the enzyme.  相似文献   

19.
20.
In this Letter, we demonstrate the formation of m5dC from dC or in DNA by dimethylsulfoxide (DMSO) and methionine sulfoxide (MetO), under physiological conditions in the presence of the Fenton reagent in vitro. DMSO reportedly affects the cellular epigenetic profile, and enhances the metastatic potential of cultured epithelial cells. The methionine sulfoxide reductase (Msr) gene was suggested to be a metastatis suppressor gene, and the accumulation of MetO in proteins may induce metastatic cancer. Our findings are compatible with these biological data and support the hypothesis that chemical cytosine methylation via methyl radicals is one of the mechanisms of DNA hypermethylation during carcinogenesis. In addition to m5dC, the formation of 8-methyldeoxyguanosine (m8dG) was also detected in DNA under the same reaction conditions. The m8dG level in human DNA may be a useful indicator of DNA methylation by radical mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号