首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This report describes one 3000 ps and two 1500 ps molecular dynamic simulations on a TATA box containing dodecamer DNA duplex in a periodic box of TIP3P water molecules, using the AMBER 4.1 implementation of the particle-mesh Ewald method. We compare the effect of warmup protocol and simulation time length on the root-mean square deviation (RMSD) parameter. For the longer simulation, the RMSD computed for the 500–1000 ps time interval is representative of longer time intervals, including 500–3000 ps. The various warmup protocols do not appear to have a significant effect on the simulation results. Based on the present results, DNA sequence-dependent differences in RMSD, or related properties, should exceed two standard deviations before being attributed to non-simulation factors, such as warmup protocol and sampling time effects; we recommend a minimum criterion of at least a three standard deviation difference with a sampling period of at least 500–1000 ps. In addition, while end effects appear negligible there is a consistent dependence of RMSD on DNA helix length.  相似文献   

2.
Abstract

Parallel-stranded (ps) DNA hairpins with alternating d(A-isoG)/d(T·C) (designated as ps-t1) and d(A·G)/d(T·m5isoC) (ps-t2) sequences were studied by means of UV, CD and fluorescence spectroscopy. The thermostability of d(A·G)/d(T·m5isoC) sequence was close to that of aps d(G·A)/d(T·C). The stability of the ps d(A·isoG)/d(T·C) sequence was even higher than that of a related anti-parallel-stranded (aps) d(G·A)/d(T·C) sequence, being unique for ps DNAs studied so far.  相似文献   

3.
Abstract

We have studied the binding of the hybrid netropsin-flavin (Net-Fla) molecule onto four sequences containing four A.T base pairs. Molecular mechanics minimizations in vacuo show numerous minimal conformations separated by one base pair. 400 ps molecular dynamics simulations in vacuo have been performed using the lowest minima as the starting conformations. During these simulations, the flavin moiety of the drug makes two hydrogen bonds with an amino group of a neighboring guanine. A 200 ps molecular dynamics simulation in explicit water solution suggests that the binding of Net-Fla upon the DNA substrate is enhanced by water bridges. A water molecule bridging the amidinium of Net-Fla to the N3 atom of an adenine seems to be stuck in the dmg-DNA complex during the whole simulation. The fluctuations of the DNA helical parameters and of the torsion angles of the sugar-phosphate backbone are very similar in the simulations in vacuo and in water. The time auto-correlation functions for the DNA helical parameters decrease rapidly in the picosecond range in vacuo. The same functions computed from the water solution molecular dynamics simulations seem to have two modes: the rapid mode is similar to the behavior in vacuo, and is followed by a slower mode in the 10 ps range.  相似文献   

4.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

5.
Abstract

The formation of Antiparallel-Parallel-Combination (APC) DNA, a liner duplex with a segment of parallel-stranded (ps) helix flanked by conventional B-DNA, was tested with a number of synthetic oligonucleotides. The groove-binding ligand distamycin A (DstA) was used to stabilize the ps segment comprising five A·T base pairs. Two drug molecules bound per APC, one in each of the two equivalent grooves characteristic of ps-DNA. APC-DNA, reference molecules and their complexes with DstA were analysed by several methods: circular dichroism and absorption spectroscopy, thermal denaturation, chemical modification, and molecular modeling. The dye binding stoichiometry differed significantly due to inherent structural differences in the groove geometries of ps-DNA (trans base pairs, similar grooves) and conventional antiparallel-stranded (aps) B-DNA (cis base pairs, distinct major and minor grooves). The data support the existence of APC folding in solution.  相似文献   

6.
Abstract

A 75ps molecular dynamics simulation has been performed on a fully solvated complex of spermine with the B DNA decamer (dGdC)5 · (dGdC)5. The simulation indicates a possible mechanism by which polyamines might induce the formation of a left-handed helix, the B to Z transition. Spermine was initially located in the major groove, hydrogen bonded to the helix. During the simulation the ligand migrates deeper into the DNA, maintaining strong hydrogen bonding to the central guanine bases and destroying the Watson-Crick base pairing with their respective cytosines. Significant rotation of these and other cytosine bases was observed, in part due to interactions of the helix with the aminopropyl chains of spermine. An intermediate BII conformation might be of importance in this process.  相似文献   

7.
Abstract

The effect of spermine on the A-DNA to B-DNA transition in d(CGCGAATTCGCG)2 has been investigated by five A-start molecular dynamics simulations, using the Cornell et al. potential. In the absence of spermine an A→B transition is initiated immediately and the DNA becomes equidistant from the A- and B-forms at 200ps. In three DNA-spermine simulations, when a spermine is located across the major groove of A-DNA in one of three different initial locations, the time taken to reach equidistance from the A- and B-forms is delayed until 800, 950 or 1000ps. In each case the A-form appears to be temporarily stabilized by spermine's electrostatic interactions with phosphates on both sides of the major groove. The onset of the A→B transition can be correlated with the spermine losing contact with phosphates on one side of the groove and with A-like → B-like sugar pucker transitions in the vicinity of the spermine bridge. However in the fifth trajectory, in which the spermine initially threads from the major groove via the backbone into the minor groove, the B→A transition occurs rapidly once again and the DNA is equidistant between the A- and B-forms within 300ps. This indicates that the mere presence of spermine is insufficient to delay the transition and that major groove binding stabilizes A-DNA.  相似文献   

8.
9.
G-Quadruplex and i-Motif-forming sequences in the promoter regions of several oncogenes show promise as targets for the regulation of oncogenes. In this study, molecular models were created for the c-MYC NHE-III1 (nuclease hypersensitivity element III1) from two 39-base complementary sequences. The NHE modeled here consists of single folded conformers of the polypurine intramolecular G-Quadruplex and the polypyrimidine intramolecular i-Motif structures, flanked by short duplex DNA sequences. The G-Quadruplex was based on published NMR structural data for the c-MYC 1:2:1 loop isomer. The i-Motif structure is theoretical (with five cytosine–cytosine pairs), where the central intercalated cytosine core interactions are based on NMR structural data obtained for a tetramolecular [d(A2C4)4] model i-Motif. The loop structures are in silico predictions of the c-MYC i-motif loops. The porphyrin meso-tetra(N-methyl-4-pyridyl)porphine (TMPyP4), as well as the ortho and meta analogs TMPyP2 and TMPyP3, were docked to six different locations in the complete c-MYC NHE. Comparisons are made for drug binding to the NHE and the isolated G-Quadruplex and i-Motif structures. NHE models both with and without bound cationic porphyrin were simulated for 100 ps using molecular dynamics techniques, and the non-bonded interaction energies between the DNA and porphyrins calculated for all of the docking interactions. Figure Molecular models of the average structure of the final 20 ps of the molecular dynamics simulation of the c-MYC NHE-III1 (nuclease hypersensitivity element III1) “silencer” element. The G-Quadruplex structure is at the top-center, and the i-Motif is at the bottom-center of each picture. a “Rotation #1” of the G-Quadruplex, with the T15 loop at the top and rear and the G19/A20 loop at the top and front of the picture. b “Rotation #2” of the G-Quadruplex, with the T15 loop at the top and front of the image, and the G19/A20 loop at the front and adjacent to the G-Quadruplex/i-Motif interface  相似文献   

10.
Abstract

Molecular modeling and molecular dynamics were performed to investigate the interaction of norfloxacin with the DNA oligonucleotide 5′-d(ATACGTAT)2. Eight quinolone-DNA binding structures were built by molecular modeling on the basis of experimental results. A 100ps molecular dynamics calculation was carried out on two groove binding models and six partially intercalating models. The resulting average structures were compared with each other and to free DNA structure as a reference. The favorable binding mode of norfloxacin to a DNA substrate was pursued by structural assess including steric hindrance, presence of hydrogen-bonding, non-bonding energies of the complex and presence of abnormal structural distortion. Although two of the intercalative models showed the highest binding energy and the lowest non-bonding interaction energy, they presented structural features which contrast with experimental results. On the other hand, one groove binding model demonstrated the most acceptable structure when the experimental observation was accounted. In this model, hydrogen bonding of the carbonyl and carboxyl group of the norfloxacin rings with the DNA bases was present, and norfloxacin binds to the amine group of the guanine base which protrudes toward the minor groove of B-DNA.  相似文献   

11.
Abstract

The replacement of phosphodiester linkages of the polyanion DNA with S-methylthiourea linkers provides the polycation deoxyribonucleic S-methylthiourea (DNmt). Molecular dynamics studies to 1,220 ps of the hybrid triplex formed from octameric DNmt strands d(Tmt)8 with a complementary DNA oligomer strand d(Ap)8 have been carried out with explicit water solvent and Na counterions under periodic boundary conditions using the CHARMM force field and the Ewald summation method. The Watson-Crick and Hoogsteen hydrogen-bonding patterns of the A/T tracts remained intact without any structural restraints for triplex structures throughout the simulation. The duplex portion of the triplex structure equilibrated at a B-DNA conformation in terms of the helical rise and other helical parameters. The dynamic structures of the DNmt·DNA·DNmt triplex were determined by examining histograms from the last 800 ps of the dynamics run. These included the hydrogen-bonding pattern (sequence recognition), three-centered bifurcating occurrences, minor groove width variations, and bending of tracts for the hybrid triplex structures. Together with the Watson-Crick hydrogen-bondings, the strong Hoogsteen hydrogen-bondings, the partially maintained three-centered bifurcatings in the Watson-Crick pair, and the medium-strength three-centered bifurcatings in the Hoogsteen pair suggest that the hybrid triplex is energetically favorable as compared to a duplex with similar base stacking, van der Waals interactions, and helical parameters. This is in agreement with our previously reported thermody- namic study, in which only triplex structures were observed in solution. The bending angle measured between the local axis vectors of the first and last helical axis segments is about 20° for the Watson-Crick portion of the averaged structure. Propeller twist (associated with three-centered hydrogen-bonding) up to ?30°, native to DNA AT base pairing, was also observed for the triplex structure. The sugar pseudorotation phase angles and the ring rotation angles for the DNA strand are within the C3′-endo domain and C2′-endo domain for the DNmt strand. Water spines are observed in both minor and major grooves throughout the dynamics run. The molecular dynamics simulations of the structural properties of DNmt·DNA·DNmt hybrid triplex is compared to the DNG·DNA·DNG hybrid triplex (In DNG the -O-(PO2-)-O- linkers in DNA is replaced by -NH-C(=N2)-NH-).  相似文献   

12.
Abstract

An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3′ and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process.  相似文献   

13.
Abstract

A heptanucleotide sequence d(TATCACC)2 from OR3 region of bacteriophage X is considered sufficient for the recognition of Cro protein. We present here results on molecular dynamic simulations on this sequence for 100 ps in 0.02 ps interval. The simulations are done using computer program GROMOS. The conformational results are averaged over each ps. The IUPAC torsional parameters for 100 conformations are illustrated using a wheal and a dial systems. Several other stereochemical parameters such as H-bonding lengths and angles, sugar puckers, helix twist and roll angles as also distances between opposite strand phosphorus are depicted graphically. We find that there is rupture of terminal H-bonds. The bases are tilted and shifted away from the helix axis giving rise to bifurcated H-bonds. H- bonds are seen even in between different base pairs. The role of these dynamic structural changes in the recognition of OR3 operator by Cro protein is discussed in the paper.  相似文献   

14.
15.
Abstract

Parallel-stranded (ps) oligonucleotide duplexes are described containing isoguanine-cytosine and/or 5-methylisocytosine-guanine base pairs. A parallel hybrid is also formed when 5-aza-7-deazaguanine base pairs with guanine while the base pair with isoguanine results in an antiparallel duplex. Oligomers such as d(T4isoG4T4) form selfassembled tetraplexes which show a cation selectivity different from that of the G-quartet.  相似文献   

16.
Abstract

We present here results on 260 pico seconds (ps) molecular dynamics (MD) simulation of substance P (SP) in hydrated bilayer of dimyristoyl phosphatidyl choline (DMPC) (39 molecules of DMPC with 776 water molecules). 260 ps MD simulation has been carried out in 0.001 ps time interval with united atom force field, using AMBER 4.0 package. Non bonded pair list was updated every 20 cycles using 12.5 Å cut off distance. Analysis of MD data is done using our package ANALMD. The obtained models are presented using graphics package RASMOL. All simulations, analysis of MD data and graphics is done on INDIGO-2, R-4400 extreme graphics work station. Our results show no systematic change in order parameter, but reduction in transfraction of the chain torsional angles, compared to our earlier results on MD simulation on hydrated DMPC bilayer without SP. C-terminal and central peptide residues adopt partial helical conformation. Helix type as classified on the basis of H-bonds is between a and 310. The peptide backbone shows flexibility during heating runs. Later, it is stabilized and there was not much change in the spatial position of the backbone. Lipid matrix serves the role of immobilization of the peptide backbone in a preferred conformation.  相似文献   

17.
Plasmid DNA encoding a luciferase reporter gene was complexed with each of six different hybrid nanoparticles (NPs) synthesized from mixtures of poly (D, L-lactide-co-glycolide acid) (PLGA 50:50) and the cationic lipids DOTAP (1, 2-Dioleoyl-3-Trimethyammonium-Propane) or DC-Chol {3β-[N-(N', N'-Dimethylaminoethane)-carbamyl] Cholesterol}. Particles were 100-400 nm in diameter and the resulting complexes had DNA adsorbed on the surface (out), encapsulated (in), or DNA adsorbed and encapsulated (both). A luciferase reporter assay was used to quantify DNA expression in 293 cells for the uptake of six different NP/DNA complexes. Optimal DNA delivery occurred for 105 cells over a range of 500 ng - 10 μg of NPs containing 20-30 μg DNA per 1 mg of NPs. Uptake of DNA from NP/DNA complexes was found to be 500-600 times as efficient as unbound DNA. Regression analysis was performed and lines were drawn for DNA uptake over a four week interval. NP/DNA complexes with adsorbed NPs (out) showed a large initial uptake followed by a steep slope of DNA decline and large angle of declination; lines from uptake of adsorbed and encapsulated NPs (both) also exhibited a large initial uptake but was followed by a gradual slope of DNA decline and small angle of declination, indicating longer times of luciferase expression in 293 cells. NPs with encapsulated DNA only (in), gave an intermediate activity. The latter two effects were best seen with DOTAP-NPs while the former was best seen with DC-Chol-NPs. These results provide optimal conditions for using different hybrid NP/DNA complexes in vitro and in the future, will be tested in vivo.  相似文献   

18.
Summary The internal mobility of three isomeric cyclic RGD hexapeptides designed to contain two -turns in defined positions, cyclo(Arg-Gly-Asp-Gly-d-Pro-Pro) (I), cyclo(Arg-Gly-Asp-d-Pro-Gly-Pro) (II) and cyclo(Arg-Gly-Asp-d-Pro-Pro-Gly) (III), have been studied by 13C NMR longitudinal and transverse relaxation experiments and measurements of steady-state heteronuclear {1H}-13C NOE enhancement with 13C at natural abundance. The data were interpreted according to the model-free formalism of Lipari and Szabo, which is usually applied to data from macromolecules or larger sized peptides with overall rotational correlation times exceeding 1 ns, to yield information about internal motions on the 10–100 ps time scale. The applicability of the model-free analysis with acceptable uncertainties to these small peptides, with overall rotational correlation times slightly below 0.3 ns, was demonstrated for this specific instance. Chemical exchange contributions to T2 from slower motions were also identified in the process. According to the order parameters obtained for its backbone -carbon atoms, II has the most rigid backbone conformation on the 10–100 ps time scale, and I the most flexible. This result coincides with the results of earlier NMR-constrained conformational searches, which indicated greatest uncertainty in the structure of I and least in II.  相似文献   

19.
Noncanonical parallel-stranded DNA double helices (ps-DNA) of natural nucleotide sequences are usually less stable than the canonical antiparallel-stranded DNA structures, which ensures reliable cell functioning. However, recent data indicate a possible role of ps-DNA in DNA loops or in regions of trinucleotide repeats connected with neurodegenerative diseases. The review surveys recent studies on the effect of nucleotide sequence on preference of one or other type of DNA duplex. (1) Ps-DNA of mixed AT/GC composition was found to have conformational and thermodynamic properties drastically different from those of a Watson–Crick double helix. Its stability depends strongly on the specific sequence in a manner peculiar to the ps double helix, because of the energy disadvantage of the AT/GC contacts. The AT/GC boundary facilitated flipping of A and T out of the ps double helix. Proton acceptor groups of bases are exposed into both grooves of the ps-DNA and are accessible to solvent and ligands, including proteins. (2) DNA regions containing natural minor bases isoguanine and isomethylisocytosine were shown to form ps-DNA with transAT-, trans isoGC, and transiso5meCG pairs exceeding in stability a related canonical duplex. (3) Nucleotide sequence dG(GT)4G from yeast telomeres and microsatellites was demonstrated to form novel ps-DNA with GG and TT base pairing. Unlike d(GT) n - and d(G n T m ) sequences able to form quadruplexes, the dG(GT)4G sequence formed no alternative double- or multistranded structures in a wide range of experimental conditions, thus suggesting that the nucleotide context governs the observed structural polymorphism of the d(GT) n sequence. The possible biological role of ps-DNA and the prospects of its study are discussed.  相似文献   

20.
Understanding why human immunodeficiency virus (HIV) preferentially infects some CD4+ CD45RO+ memory T cells has implications for antiviral immunity and pathogenesis. We report that differential expression of a novel secreted factor, ps20, previously implicated in tissue remodeling, may underlie why some CD4 T cells are preferentially targeted. We show that (i) there is a significant positive correlation between endogenous ps20 mRNA in diverse CD4 T-cell populations and in vitro infection, (ii) a ps20+ permissive cell can be made less permissive by antibody blockade- or small-interference RNA-mediated knockdown of endogenous ps20, and (iii) conversely, a ps20low cell can be more permissive by adding ps20 exogenously or engineering stable ps20 expression by retroviral transduction. ps20 expression is normally detectable in CD4 T cells after in vitro activation and interleukin-2 expansion, and such oligoclonal populations comprise ps20positive and ps20low/negative isogenic clones at an early differentiation stage (CD45RO+/CD25+/CD28+/CD57). This pattern is altered in chronic HIV infection, where ex vivo CD4+ CD45RO+ T cells express elevated ps20. ps20 promoted HIV entry via fusion and augmented CD54 integrin expression; both of these effects were reversed by anti-ps20 antibody. We therefore propose ps20 to be a novel signature of HIV-permissive CD4 T cells that promotes infection in an autocrine and paracrine manner and that HIV has coopted a fundamental role of ps20 in promoting cell adhesion for its benefit. Disrupting the ps20 pathway may therefore provide a novel anti-HIV strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号