首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have reported previously that purine methylenecyclopropane analogs are potent agents against cytomegaloviruses. In an attempt to extend the activity of these compounds, the 2-amino-6-cyclopropylaminopurine analog, QYL-1064, was selected for further study by modifying the purine 6 substituent. A total of 22 analogs were tested against herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), Epstein-Barr virus (EBV), human herpesvirus type 6 (HHV-6) and human herpesvirus type 8 (HHV-8). Ten of the analogs had activity against at least one of the viruses tested. One compound had moderate activity against HSV-1 and six had activity against VZV. All but one compound was active against HCMV with a mean EC50 of 2.1 +/- 0.6 microM, compared with a mean EC50 of 3.9 +/- 0.8 microM for ganciclovir. Of special interest was the fact that eight of the ten compounds were active against both HHV-6A and HHV-6B with mean EC50 values of 6.0 +/- 5.2 mciroM and <2.4 +/- 1.5 microM, respectively. Only two compounds had activity against EBV, whereas all but one compound was active against HHV-8 with a mean EC50 of 3.1 +/- 1.7 microM. These results indicate that members of this series of methylenecyclopropane analogs are highly active against HCMV, HHV-6, and HHV-8 but are less active against HSV, VZV, and EBV.  相似文献   

2.
The 4-oxo-dihydroquinolines (PNU-182171 and PNU-183792) are nonnucleoside inhibitors of herpesvirus polymerases (R. J. Brideau et al., Antiviral Res. 54:19-28, 2002; N. L. Oien et al., Antimicrob. Agents Chemother. 46:724-730, 2002). In cell culture these compounds inhibit herpes simplex virus type 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV), varicella-zoster virus (VZV), and human herpesvirus 8 (HHV-8) replication. HSV-1 and HSV-2 mutants resistant to these drugs were isolated and the resistance mutation was mapped to the DNA polymerase gene. Drug resistance correlated with a point mutation in conserved domain III that resulted in a V823A change in the HSV-1 or the equivalent amino acid in the HSV-2 DNA polymerase. Resistance of HCMV was also found to correlate with amino acid changes in conserved domain III (V823A+V824L). V823 is conserved in the DNA polymerases of six (HSV-1, HSV-2, HCMV, VZV, Epstein-Barr virus, and HHV-8) of the eight human herpesviruses; the HHV-6 and HHV-7 polymerases contain an alanine at this amino acid. In vitro polymerase assays demonstrated that HSV-1, HSV-2, HCMV, VZV, and HHV-8 polymerases were inhibited by PNU-183792, whereas the HHV-6 polymerase was not. Changing this amino acid from valine to alanine in the HSV-1, HCMV, and HHV-8 polymerases alters the polymerase activity so that it is less sensitive to drug inhibition. In contrast, changing the equivalent amino acid in the HHV-6 polymerase from alanine to valine alters polymerase activity so that PNU-183792 inhibits this enzyme. The HSV-1, HSV-2, and HCMV drug-resistant mutants were not altered in their susceptibilities to nucleoside analogs; in fact, some of the mutants were hypersensitive to several of the drugs. These results support a mechanism where PNU-183792 inhibits herpesviruses by interacting with a binding determinant on the viral DNA polymerase that is less important for the binding of nucleoside analogs and deoxynucleoside triphosphates.  相似文献   

3.
The human herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, HHV-7 and HHV-8, establish persistent infections with possible recurrence during immunosuppression. HCMV replication is inhibited by the nucleoside analogue ganciclovir (GCV), the compound of choice for the treatment of HCMV diseases and preemptive treatment of infections. The viral UL97 protein (pUL97) which shares homologies with protein kinases and bacterial phosphotransferases is able to monophosphorylate GCV. Homologues of pUL97 are found in HSV (UL13), VZV (ORF47), EBV (BGLF4), HHV-6 (U69), HHV-8 (ORF36) as well as in murine CMV (M97) or rat CMV (R97). Several indolocarbazoles have been reported to be specific inhibitors of pUL97. The protein is important for efficient replication of the virus. Autophosphorylation of pUL97 was observed using different experimental systems. Most recently, it has been shown that pUL97 interacts with the DNA polymerase processivity factor pUL44. Indolocarbazole protein kinase inhibitors are promising lead compounds for the development of more specific inhibitors of HCMV.  相似文献   

4.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2),varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and-methenyl derivatives (A-5021 and synguanol) and the 6-membered D-and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5′-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- andL-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

5.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

6.
The Z- and E-thymine and cytosine pronucleotides 3d, 4d, 3e, and 4e of methylenecyclopropane nucleosides analogues were synthesized, evaluated for their antiviral activity against human cytomegalovirus (HCMV), herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human immunodeficiency virus type 1 (HSV-1), and hepatitis B virus (HBV) and their potency was compared with the parent compounds 1d, 2d, 1e, and 2e. Prodrugs 3d and 4d were obtained by phosphorylation of parent analogues 1d or 2d with reagent 8. A similar phosphorylation of N4-benzoylcytosine methylenecyclopropanes 9a and 9b gave intermediates 11a and 11b. Deprotection with hydrazine in pyridine-acetic acid gave pronucleotides 3e and 4e. The Z-cytosine analogue 3e was active against HCMV and EBV The cytosine E-isomer 4e was moderately effective against EBV.  相似文献   

7.
Z- and E-Phosphonate analogues 12 and 13 derived from cyclopropavir and the corresponding cyclic phosphonates 14 and 15 were synthesized and their antiviral activity was investigated. The 2,2-bis(hydroxymethylmethylenecyclopropane acetate (17) was transformed to tetrahydropyranyl acetate 18. Deacetylation gave intermediate 19 which was converted to bromide 20. Alkylation with diisopropyl methylphosphonate afforded after protecting group exchange (21 to 22) acetylated phosphonate intermediate 22. Addition of bromine gave the dibromo derivative 16 which was used in the alkylation–elimination procedure with 2-amino-6-chloropurine to give Z- and E-isomers 23 and 24. Hydrolytic dechlorination coupled with removal of all protecting groups gave the guanine phosphonates 12 and 13. Cyclization afforded the cyclic phosphonates 14 and 15. Z-Phosphonate 12 was a potent and non-cytotoxic inhibitor of human and murine cytomegalovirus (HCMV and MCMV) with EC50 2.2–2.7 and 0.13 μM, respectively. It was also an effective agent against Epstein-Barr virus (EBV, EC50 3.1 μM). The cyclic phosphonate 14 inhibited HCMV (EC50 2.4–11.5 μM) and MCMV (EC50 0.4 μM) but it was ineffective against EBV. Both phosphonates 12 and 14 were as active against two HCMV Towne strains with mutations in UL97 as they were against wild-type HCMV thereby circumventing resistance due to such mutations. Z-Phosphonate 12 was a moderate inhibitor of replication of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) but it was a potent agent against varicella zoster virus (VZV, EC50 2.9 μM). The cyclic phosphonate 14 lacked significant potency against these viruses. E-isomers 13 and 15 were devoid of antiviral activity.  相似文献   

8.
Human herpesvirus 6 is closely related to human cytomegalovirus.   总被引:32,自引:18,他引:14       下载免费PDF全文
A sequence of 21,858 base pairs from the genome of human herpesvirus 6 (HHV-6) strain U1102 is presented. The sequence has a mean composition of 41% G + C, and the observed frequency of CpG dinucleotides is close to that predicted from this mononucleotide composition. The sequence contains 17 complete open reading frames (ORFs) and part of another at the 5' end of the sequence. The predicted protein products of two of these ORFs have no recognizable homologs in the genomes of other sequenced human herpesviruses (i.e., Epstein-Barr virus [EBV], human cytomegalovirus [HCMV], herpes simplex virus [HSV], and varicella-zoster virus [VZV]). However, the products of nine other ORFs are clearly homologous to a set of genes that is conserved in all other sequenced herpesviruses, including homologs of the alkaline exonuclease, the phosphotransferase, the spliced ORF, and the major capsid protein genes. Measurements of similarity between these homologous sequences showed that HHV-6 is clearly most closely related to HCMV. The degree of relatedness between HHV-6 and HCMV was commensurate with that observed in comparisons between HSV and VZV or EBV and herpesvirus saimiri and significantly greater than its relatedness to EBV, HSV, or VZV. In addition, the gene for the major capsid protein and its 5' neighbor are reoriented with respect to the spliced ORFs in the genomes of both HHV-6 and HCMV relative to the organization observed in EBV, HSV, and VZV. Three ORFs in HHV-6 have recognizable homologs only in the genome of HCMV. Despite differences in gross composition and size, we conclude that the genomes of HHV-6 and HCMV are closely related.  相似文献   

9.
We describe the design, synthesis and evaluation of a series of N2,N4-diaminoquinazoline analogs as PDE5 inhibitors. Twenty compounds were prepared and these were assessed in terms of their PDE5 and PDE6 activity, ex-vivo vasodilation response, mammalian cytotoxicity and aqueous solubility. Molecular docking was used to determine the binding mode of the series and this was demonstrated to be consistent with the observed SAR. Compound 15 was the most active PDE5 inhibitor (IC50?=?0.072?±?0.008?µM) and exhibited 4.6-fold selectivity over PDE6. Ex-vivo assessment of 15 and 22 in a rat pulmonary artery vasodilation model demonstrated EC50s of 1.63?±?0.72?µM and 2.28?±?0.74?µM respectively.  相似文献   

10.

The Z- and E-thymine and cytosine pronucleotides 3d, 4d, 3e, and 4e of methylenecyclopropane nucleosides analogues were synthesized, evaluated for their antiviral activity against human cytomegalovirus (HCMV), herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human immunodeficiency virus type 1 (HSV-1), and hepatitis B virus (HBV) and their potency was compared with the parent compounds 1d, 2d, 1e, and 2e. Prodrugs 3d and 4d were obtained by phosphorylation of parent analogues 1d or 2d with reagent 8. A similar phosphorylation of N4-benzoylcytosine methylenecyclopropanes 9a and 9b gave intermediates 11a and 11b. Deprotection with hydrazine in pyridine–acetic acid gave pronucleotides 3e and 4e. The Z-cytosine analogue 3e was active against HCMV and EBV. The cytosine E-isomer 4e was moderately effective against EBV.  相似文献   

11.
Abstract

Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus (i.e. HSV-1, HSV-2, VZV and HCMV) infections. In recent years, several new guanosine analogues have been developed, including the 3-membered (cyclopropyl) sugar derivative A-5021 and the 6-membered D- and L-cyclohexenyl derivatives. Prominent features shared by all guanosine analogues are the following. They depend for their phosphorylation on the virus-encoded thymidine kinase (TK), which makes them particularly effective against those viruses (HSV-1, HSV-2 and VZV) that encoded for such TK. They are also active against HCMV, whether or not they are subject of phosphorylation by the HCMV-induced UL97 protein kinase. Their antiviral activity can be markedly potentiated by mycophenolic acid, an IMP dehydrogenase inhibitor, and they hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also as antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transfected by the viral TK gene.  相似文献   

12.
Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93?±?0.29?µM for Plm II; Ki, 1.99?±?0.05?µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84?±?0.08?µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27?±?0.95?µM for 10f; IC50, 3.11?±?0.65?µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35?±?0.85?µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.  相似文献   

13.
Synthesis of (Z)-(2,3-bis-hydroxymethyl)methylenecyclopropane analogues of nucleosides adenosine 10a, 10b, 10c and 17 is described. Epimerization of Feist's acid (11) using acetic anhydride gave cyclic anhydride 12 which was reduced in situ to give diol 13. Acetylation (compound 14) followed by addition of bromine led to dibromo derivative 15. Alkylation-elimination of adenine with 15 afforded, after deacetylation, analogue 10a. Similar treatment of 2-amino-6-chloropurine and 2,6-diaminopurine led to diacetates 16 and 18. Deprotection then gave compounds 17 and 10c. Hydrolysis of 17 furnished guanine analogue 10b. Compounds 10a, 10b or 10c were inactive against HCMV, HSV-1, HSV-2, EBV VZV and HBV. Analogues 10a and 10b were also assayed for anti-HIV activity. Compound 10a was effective in HIV-1/MT-2 culture with EC50/CC50 33/> 100 microM but 10b was inactive. Analogue 10a was not a substrate for adenosine deaminase.  相似文献   

14.
An analysis of all known human herpesviruses has not previously been reported on sperm from normal donors. Using an array-based detection method, we determined the cross-sectional frequency of human herpesviruses in semen from 198 Danish sperm donors. Fifty-five of the donors had at least one ejaculate that was positive for one or more human herpesvirus. Of these 27.3% (n = 15) had a double herpesvirus infection. If corrected for the presence of multiple ejaculates from some donors, the adjusted frequency of herpesviruses in semen was 27.2% with HSV-1 in 0.4%; HSV-2 in 0.1%; EBV in 6.3%; HCMV in 2.7%; HHV-6A/B in 13.5%; HHV-7 in 4.2%, whereas none of the samples had detectable VZV or HHV-8. Subsequently, we examined longitudinally data on ejaculates from 11 herpesvirus-positive donors. Serial analyses revealed that a donor who tested positive for herpesvirus at one time point did not necessarily remain positive over time. For the most frequently found herpesvirus, HHV-6A/B, we examined its association with sperm. For HHV-6A/B PCR-positive semen samples, HHV-6A/B could be detected on the sperm by flow cytometry. Conversely, PCR-negative semen samples were negative by flow cytometry. HHV-6B was shown to associate with sperm within minutes in a concentration dependent manner. Confocal microscopy demonstrated that HHV-6B associated with the sperm head, but only to sperm with an intact acrosome. Taken together, our data suggest that HHV-6A/B could be transported to the uterus via binding to the sperm acrosome. Moreover, we find a 10 times higher frequency of HHV-7 in semen from healthy individuals than previously detected. Further research is required to determine the potential risk of using herpesvirus-positive donor semen. Longitudinally analyses of ejaculate series indicate that implementation of quarantine for a donor shown to shed a herpesvirus is not a tenable solution.  相似文献   

15.
Synthesis and biological activity of racemic 2-aminopurine methylenecyclopropane analogues of nucleosides 4, 5, 10 and 11 is described. One-pot alkylation-elimination of 2-aminopurine (6) with dibromide 7 gave a mixture of four isomeric methylenecyclopropanes. The (E, Z)-N9 and (E, Z)-N7 isomers 8 and 9 were resolved by chromatography on silica gel. Deacetylation of 8 afforded the respective (Z)-N9 and (E)-N9 isomers 4 and 10 which were separated by chromatography on silica gel. In a similar fashion, (E, Z)-N7 mixture 9 furnished (Z)-N7 and (E)-N7 isomers 5 and 11. The S-(+)-enantiomer 4 was obtained by desulfurization of (S)-(+)-6-thiosynguanol (13) with Raney Ni. Compound 13 was obtained from (S)-(+)-2-amino-6-chloro derivative 12 and NaSH in methanol. Racemic analogues 4, 5, 10 and 11 were inactive against HCMV, HSV-1, HSV-2, EBV and VZV. Enantiomer (S)-(+)-4 inhibited replication of HSV-1 in BSC-1 cells (ELISA) with EC50 35 microM and it was non-cytotoxic in KB cells (CC50 > 100 microM). Compound (S)-(+)-4 was also moderately effective against VZV in HFF culture with EC50/CC50 (microM) 60/>460 and it was a substrate for xanthine oxidase.  相似文献   

16.
A novel series of 2-aryl-2-hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno[2,3-b]pyridine-5-carboxamides have been identified as potent antivirals against human herpesviruses. These compounds demonstrate broad-spectrum inhibition of the herpesvirus polymerases HCMV, HSV-1, EBV, and VZV with high specificity compared to human DNA polymerases.  相似文献   

17.
A series of piperazinyl-β-carboline-3-carboxamide derivatives were designed through a molecular hybridization approach. Designed analogues were synthesized, characterized and evaluated for anti-leishmanial activity against Leishmania infantum and Leishmania donovani. In L. infantum inhibition assay, compounds 7d, 7g and 7c displayed potent inhibition of promastigotes (EC50 1.59, 1.47 and 3.73 µM respectively) and amastigotes (EC50 1.4, 1.9 and 2.6 µM respectively). SAR studies revealed that, para substitution of methoxy, chloro groups and methyl group on ortho position favored anti-leishmanial activity against L. infantum. Among these analogues 7d, 7h, 7n and 7g exhibited potent inhibition against L. donovani promastigotes (EC50 0.91, 4.0, 4.57 and 5.02 µM respectively), axenic amastigotes (EC50 0.9, 3.5, 2.2 and 3.8 µM respectively) and intracellular amastigotes (EC50 1.3, 7.8, 5.6 and 6.3 µM respectively). SAR studies suggested that, para substitution of methoxy group, para and meta substitution of chloro groups and benzyl replacement recommended for significant anti-leishmanial against L. donovani.  相似文献   

18.
Harmful cyanobacteria bloom (HCB) has occurred frequently in recent years and it is urgent to develop novel algicides to deal with this problem. In this paper, a series of novel thiamin diphosphate (ThDP) analogs 5a?5g were designed and synthesized targeting cyanobacterial pyruvate dehydrogenase complex E1 (Cy-PDHc E1). Our results showed that compounds 5a?5g have higher inhibitory activities against Cy-PDHc E1 (IC50 9.56–3.48 µM) and higher inhibitory activities against two model cyanobacteria strains Synechocystis sp PCC6803 (EC50 2.03–1.58 µM) and Microcystis aeruginosa FACHB905 (EC50 1.86–0.95 µM). Especially, compound 5b displayed highest inhibitory activities (IC50 = 3.48 µM) against Cy-PDHc E1 and powerful inhibitory activities against cyanobacteria Synechocystis sp PCC6803 (EC50 = 1.58 µM) and Microcystis aeruginosa FACHB905 (EC50 = 1.04 µM). Moreover, the inhibitory activities of compound 5b were even higher than those of copper sulfate (EC50 = 2.02 and 1.71 µM separately) which has been widely used as algicide against cyanobacteria PCC6803 and FACHB905. The more important was that compound 5b display much higher inhibitory selectivity between Cy-PDHc E1 (Inhibitory rate 97.4%) and porcine PDHc E1 (Inhibitory rate 11.8%) under the same concentration (100 μM). The inhibition kinetic experiment and molecular docking research showed that compound 5b can inhibit Cy-PDHc E1 by occupying the ThDP-binding pocket and then blocking Cy-PDHc E1 bound to ThDP as competitive inhibitor. The imagines of SEM and TEM showed that cellular microstructures were heavily destroyed under compound 5b stress. Our results demonstrated compound 5b could be taken as a potential lead compound targeting Cy-PDHc E1 to obtain environment-friendly algicide for harmful cyanobacterial blooms control.  相似文献   

19.
Abstract

Abstract. A number of 5-substituted constrained acyclic analogs of cytidine and uridine have been prepared in which the glycosyl torsion angle is constrained in the anti conformation. Compounds 2a-c, 3a-c, 4, 5 and 6 were tested for activity against HCMV and HSV-1. Compounds 2a and 2b showed moderate activity against HCMV. Compound 2c exhibited a weak inhibitory activity against HSV-1. Compounds 2a, 3a, 4, 5, 6, 8, and 9 were screened for their anti-HIV or antitumor activity. None of them were active against HIV. However, compound 9 showed a 50% inhibition on MDA-MB-231/ATTC breast cancer cell growth at a concentration of 0.15 μM.  相似文献   

20.
A versatile synthesis of 4-oxo-4,7-dihydrofuro[2,3-b]pyridine-5-carboxylate esters has been developed which has lead to the identification of a new series of non-nucleoside inhibitors of human herpesvirus polymerases HCMV, HSV-1, EBV, and VZV with high specificity compared to human DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号