首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated an unusual nucleotide that accumulates, with precursors, in the erythrocytes of patients in uraemia. This nucleotide is related chemically to the NAD breakdown product, N1-methyl-2-pyridone-5-carboxamide (Me2Py), found in high concentrations in the plasma of uraemic patients. Both Me2Py and the nucleotide accumulate to high concentrations in the blood during uraemia: our investigations of samples from renal out-patients have provided information on a plausible link between the two compounds.  相似文献   

2.
Au (III) ion‐imprinted mesoporous silica particles (Au‐Si‐Py) was manufactured by the condensation reaction of (3‐Aminopropyl)triethoxysilane (AT)and 2‐pyridinecarboxaldehyde (Py). The obtained AT‐Py Schiff base ligand was then coordinate with the template gold ions and the polymerizable gold‐complex was allowed to gel in presence of tetraethoxysilane (TEOS) and then the coordinated gold ions were leached out of the obtained silica matrix using acidified thiourea solution. During the synthetic steps, the obtained materials were investigated utilizing advanced instrumental and spectral methods. Moreover, the morphological structure of both Au (III) ions imprinted Au‐Si‐Py and non‐imprinted NI‐Si‐Py silica particles were visualized using scanning electron microscope (SEM). Various adsorption experiments had been carried out using both Au‐Si‐Py and NI‐Si‐Py to examine their potential for selective extraction of gold ions under different conditions  相似文献   

3.
A new adenosine nucleotide analog suitable for the Pyrosequencing method is presented. The new analog, 7‐deaza‐2′‐deoxyadenosine‐5′‐triphosphate (c7dATP), has virtually the same low substrate specificity for luciferase as the currently used analog, 2′‐deoxyadenosine‐5′‐O‐(1‐thiotriphosphate) (dATPαS). The inhibitory effect dATPαS displays on the nucleotide degrading activity of apyrase was reduced significantly by substituting the c7dATP for the dATPαS. Both analogs show high stability after long time storage at + 8°C. Furthermore, with the new nucleotide a read length of up to 100 bases was obtained for several templates from fungi, bacteria and viruses.  相似文献   

4.
Recent advances in cell-based therapies require new approaches for cell cryopreservation, capable of dealing with large number of samples and providing specific conditions for each cell type. Reduction of sample volume from the commonly used 1 mL to 25 microL in 30-well micro-cryosubstrates improves cryopreservation by allowing automation, data handling and access to individual wells without thawing the whole cryosubstrate. This system was evaluated for the storage of Caco-2 colon adenocarcinoma cells, which differentiate spontaneously after long-term culture. The impact of the cryosample small volume upon post-thawing membrane integrity of the cells and their capacity to proliferate and differentiate was studied. Two different cryoprotectants commonly employed, dimethyl sulfoxide (Me(2)SO) and glycerol, were evaluated as well as the possibility of decreasing their concentration from the 10% concentration, usually used, down to 3% (v/v). The process automation by pipette robotic addition of the cryoprotectant to the micro-cryosubstrates was also evaluated. The micro-cryosubstrates have proven to be at least as efficient as typical 1 mL cryovials for cryopreservation of Caco-2 cells using either Me(2)SO or glycerol. Compared to the manual process, the automatic addition of glycerol to the micro-cryosubstrates allowed higher cell viabilities after thawing while with Me(2)SO no significant changes were observed. Me(2)SO has shown to be more effective than glycerol in maintaining high post-thaw cell membrane integrity, either in micro-cryosubstrates or cryovials, for any of the concentrations tested. The ability of Me(2)SO in maintaining high cell membrane integrity post-thawing was confirmed by long-term (up to 22 days) proliferation and differentiation studies performed with cells cultured immediately after thawing.  相似文献   

5.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   

6.
7.
8.
The influence of aqueous environment on the main‐chain conformation (ω0, ?, and ψ dihedral angles) of two model peptoids: N‐acetyl‐N‐methylglycine N’‐methylamide (Ac‐N(Me)‐Gly‐NHMe) ( 1 ) and N‐acetyl‐N‐methylglycine N’,N’‐dimethylamide (Ac‐N(Me)‐Gly‐NMe2) ( 2 ) was investigated by MP2/6‐311++G(d,p) method. The Ramachandran maps of both studied molecules with cis and trans configuration of the N‐terminal amide bond in the gas phase and in water environment were obtained and all energy minima localized. The polarizable continuum model was applied to estimate the solvation effect on conformation. Energy minima of the Ac‐N(Me)‐Gly‐NHMe and Ac‐N(Me)‐Gly‐NMe2 have been analyzed in terms of the possible hydrogen bonds and C = O dipole attraction. To validate the theoretical results obtained, conformations of the similar structures gathered in the Cambridge Crystallographic Data Centre were analyzed. Obtained results indicate that aqueous environment in model peptoids 1 and 2 favors the conformation F (? and ψ = ?70º, 180º), and additionally significantly increases the percentage of structures with cis configuration of N‐terminal amide bond in studied compounds. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2‐fluoro 2‐l ‐fucose (2F‐Fuc) reduces root growth at micromolar concentrations. The inability of 2F‐Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F‐Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N‐linked glycans is fully inhibited by 10 μm 2F‐Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F‐Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan‐II (RG‐II). At low concentrations, 2F‐Fuc induced a decrease in RG‐II dimerization. Both RG‐II dimerization and root growth were partially restored in 2F‐Fuc‐treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F‐Fuc was due to a deficiency of RG‐II dimerization. Closer investigation of the 2F‐Fuc‐induced growth phenotype demonstrated that cell division is not affected by 2F‐Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG‐II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG‐II cross‐linking, but that it might also be a signal molecule in the cell wall integrity‐sensing mechanism.  相似文献   

10.
An efficient methodology for the preparation of the α‐tetrasubstituted proline analog (S,S,S)‐2‐methyloctahydroindole‐2‐carboxylic acid, (S,S,S)‐(αMe)Oic, and its enantiomer, (R,R,R)‐(αMe)Oic, has been developed. Starting from easily available substrates and through simple transformations, a racemic precursor has been synthesized in excellent yield and further subjected to HPLC resolution using a cellulose‐derived chiral stationary phase. Specifically, a semipreparative (250 mm × 20 mm ID) Chiralpak® IC column has allowed the efficient resolution of more than 4 g of racemate using a mixture of n‐hexane/tert‐butyl methyl ether/2‐propanol as the eluent. Multigram quantities of the target amino acids have been isolated in enantiomerically pure form and suitably protected for incorporation into peptides. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
α‐Amino acid residues with a ?,ψ constrained conformation are known to significantly bias the peptide backbone 3D structure. An intriguing member of this class of compounds is (αMe)Aze, characterized by an Nα‐alkylated four‐membered ring and Cα‐methylation. We have already reported that (S)‐(αMe)Aze, when followed by (S)‐Ala in the homochiral dipeptide sequential motif ‐(S)‐(αMe)Aze‐(S)‐Ala‐, tends to generate the unprecedented γ‐bend ribbon conformation, as formation of a regular, fully intramolecularly H‐bonded γ‐helix is precluded, due to the occurrence of a tertiary amide bond every two residues. In this work, we have expanded this study to the preparation and 3D structural analysis of the heterochiral (S)‐Ala/(R)‐(αMe)Aze sequential peptides from dimer to hexamer. Our conformational results show that members of this series may fold in type‐II β‐turns or in γ‐turns depending on the experimental conditions.  相似文献   

12.
Tuberculosis (TB) is one of the most common infectious diseases worldwide. IL‐37, a novel member of the IL‐1 family, has anti‐inflammatory activity. Various cytokine genes polymorphisms are reportedly associated with susceptibility to TB infection. However, an association between genetic variations in the IL‐37 gene and susceptibility to TB infection has not been investigated. The aim of this case‐control study was therefore to identify such an association in Saudi subjects, in which five single‐nucleotide polymorphisms (SNPs) in the IL‐37 gene were assessed. Serum concentrations of IL‐37 were evaluated using ELISA, and genetic variants genotyped by multiplex PCR and ligase detection reaction. It was found that the C/C genotype of rs2723176 (–6962 A/C) occurs significantly more frequently in patients with active TB and that the C allele of this SNP is associated with TB. In addition, the C allele of rs2723176 SNP was associated with high circulating concentrations of IL‐37. However, the genotype and allele frequency of the other four SNPs (rs3811046, rs3811047, rs2723186 and rs2723187) were not significantly associated with TB infection. In conclusion, the present data suggest that rs2723176 SNP of IL‐37 is involved in the development of TB infection. Furthermore, high circulating concentrations of IL‐37 may have a negative effect on protective immunity against TB infection.  相似文献   

13.
Lactoferricin (LfB) is a 25‐residue innate immunity peptide released by pepsin from the N‐terminal region of bovine lactoferrin. A smaller amidated peptide, LfB6 (RRWQWR‐NH2) retains antimicrobial activity and is thought to constitute the “antimicrobial active‐site” (Tomita, Acta Paediatr Jpn. 1994; 36 : 585–91). Here we report on N‐acylation of 1‐Me‐Trp5‐LfB6, Cn‐RRWQ[1‐Me‐W]R‐NH2, where Cn is an acyl chain having n = 0, 2, 4, 6 or 12 carbons. Tryptophan 5 (Trp5) was methylated to enhance membrane binding and to allow for selective deuteration at that position. Peptide/lipid interactions of Cn‐RRWQ[1‐Me‐W ]R‐NH2 (deuterated 1‐Me‐Trp5 underlined), were monitored by solid state 31P NMR and 2H NMR. The samples consisted of macroscopically oriented bilayers of mixed neutral (dimyristoylphosphatidylcholine, DMPC) and anionic (dimyristoylphosphatidylglycerol, DMPG) lipids in a 3:1 ratio with Cn‐RRWQ[&1‐Me‐W ]R‐NH2 peptides added at a 1:25 peptide to lipid ratio. 2H‐NMR spectra reveal that the acylated peptides are well aligned in DMPC:DMPG bilayers. The 2H NMR quadrupolar splittings suggest that the 1‐Me‐Trp is located in a motionally restricted environment, indicating partial alignment at the membrane interface. 31P‐NMR spectra reveal that the lipids are predominantly in a bilayer configuration, with little perturbation by the peptides. Methylation alone, in C0‐RRWQ[1‐Me‐W ]R‐NH2, resulted in a 3–4 fold increase in antimicrobial activity against E. coli. N‐acylation with a C12 fatty acid enhanced activity almost 90 fold. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Synthetic polycarboxamide minor groove binders (MGB) consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove in side‐by‐side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence‐specific manner, similarly to the corresponding mono‐conjugated hairpin structures. The series of conjugates with the general formula Oligo‐(L‐MGB‐R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = –(Py)n–, –(Im)n– or –[(Py/Im)n–(CH2)3CONH–(Py/Im)n–] and 1 < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis‐phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence‐specific parallel ligand [–L(Py)4R] to monophosphoroamidate conjugate CGTTTATT–L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [–L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.  相似文献   

15.
Diabetic nephropathy is one of the most common complications of diabetes mellitus and the leading cause of end‐stage renal disease. A reduction in podocyte number has been documented in the kidneys of these patients. To identify the molecular changes in podocytes that are primarily caused by high glucose (HG) concentrations and not by secondary alterations (e.g. glomerular hypertension), we investigated the protein expression profiles in a podocyte cell line under long‐term HG exposure (30 versus 10 mM for 2 wk). Proteins were separated by 2‐DE, and we identified 39 different proteins in 48 spots that were differentially regulated by more than twofold in response to HG concentrations using MALDI‐TOF MS and MASCOT software. These proteins belong to several protein classes, including cytoskeletal proteins and specific annexins (annexins III and VI). Downregulation of annexins III and VI by HG concentrations was confirmed by qRT‐PCR, Western blot, and immunostaining, and was also observed in glomeruli of kidney biopsies from patients with diabetic nephropathy. Our data demonstrate that HG concentrations per se are sufficient to strongly modify the protein expression profile of podocytes, the analysis of which contributes to the identification of novel targets involved in diabetic nephropathy.  相似文献   

16.
Although silk is used to produce textiles and serves as a valuable biomaterial in medicine, information on silk proteins of the cocoon is limited. Scanning electron microscopy was applied to morphologically characterise the sample and the solubility of cocoon in lithium thiocyanate and 2‐DE was carried out with multi‐enzyme in‐gel digestion followed by MS identification of silk‐peptides. High‐sequence coverage of the silk cocoon proteins fibroin light and heavy chain, sericins and fibrohexamerins was revealed and PTMs as heavy phosphorylation of silk fibroin heavy chain; lysine hydroxylation and Lys‐>allysine formation have been observed providing evidence for lysine‐mediated cross linking of silk as found in collagens, which has not been reported so far. Tyrosine oxidation verified the presence of di‐tyrosine cross links. A high degree of sequence conflicts probably representing single‐nucleotide polymorphisms was observed. PTM and sequence conflicts may be modulating structure and physicochemical properties of silk.  相似文献   

17.
Alkenones (C37–C40) are highly specific biomarkers produced by certain haptophyte algae in ocean and lacustrine environments and have been widely used for paleoclimate studies. Unusual shorter‐chain alkenones (SCA; e.g., C35 and C36) have been found in environmental and culture samples, but the origin and structure of these compounds are much less understood. The marine alkenone producer, Emiliania huxleyi CCMP2758 strain, was reported with abundant C35:2Me (?12, 19) alkenones when cultured at 15°C (Prahl et al. 2006). Here we show, when this strain is cultured at 4°C–10°C, that CCMP2758 produces abundant C35:3Me, C36:3Me, and small amounts of C36:3Et alkenones with unusual double‐bond positions of ?7, 12, 19. We determine the double‐bond positions of the C35:3Me and C36:3Me alkenones by GC‐MS analysis of the dimethyl disulfide and cyclobutylamine derivatives, and we provide the first temperature calibrations based on the unsaturation ratios of the C35 and C36 alkenones. Previous studies have found C35:2Me (?14, 19) and C36:2Et (?14, 19) alkenones with three‐methylene interruption in the Black Sea sediments, but this is the first reported instance of alkenones with a mixed three‐ and five‐methylene interruption configuration in the double‐bond positions. The discovery of these alkenones allows us to propose a novel biosynthetic scheme, termed the SCA biosynthesis pathway, that simultaneously rationalizes the formation of both the C35:3Me (?7, 12, 19) alkenone in our culture and the ?14, 19 Black Sea type alkenones without invoking new desaturases for the unusual double‐bond positions.  相似文献   

18.
Levels of the factor VIII complex were found to be raised in patients with chronic renal failure and further raised by regular dialysis. Increased fibrinogen concentrations were also found. These results suggest the existence of a prothrombotic state in uraemia that is exacerbated by haemodialysis. Ristocetin-induced platelet agglutination, however, was depressed in uraemia and worsened by dialysis. This defect may be transferred to normal platelets from dialysed uraemic plasma, suggesting the existence of an inhibitor of the interaction between factor VIII and platelet glycoprotein. These results may help to explain the anomaly of a prolonged bleeding time together with accelerated atherogenesis that is found in patients with uraemia receiving dialysis.  相似文献   

19.
CDDO‐Me has been shown to exert potent anti‐inflammatory activity for chronic kidney disease and antitumor activity for several tumors, including melanoma, in early clinical trials. To improve CDDO‐Me response in melanoma, we utilized a large‐scale synthetic lethal RNAi screen targeting 6000 human druggable genes to identify targets that would sensitize melanoma cells to CDDO‐Me. Based on screening results, five unique genes (GNPAT, SUMO1, SPINT2, FLI1, and SSX1) significantly potentiated the growth inhibitory effects of CDDO‐Me and induced apoptosis in A375, a BRAF mutated melanoma line (P < 0.001). These five genes were then individually validated as targets to potentiate CDDO‐Me activity, and related downstream signaling pathways of these genes were analyzed. In addition, the levels of phosphorylated Erk1/2, Akt, GSK‐2, and PRAS40 were dramatically decreased by downregulating each of these five genes separately, suggesting a set of common mediators. Our findings indicate that GNPAT, SUMO1, SPINT2, FLI1, and SSX1 play critical roles in synergy with inflammation pathways in modulating melanoma cell survival and could serve as sensitizing targets to enhance CDDO‐Me efficacy in melanoma growth control.  相似文献   

20.
Recent studies have suggested that interleukin 1 receptor‐like 1 (ST2) plays a critical role in pathogenesis of several cardiovascular disease conditions. In this study, we examined association of 13 single nucleotide polymorphisms (SNPs) of ST2 gene with essential hypertension (EH) risk in 1151 patients with EH and 1135 controls. Our study showed that variants rs11685424, rs12999364 and rs3821204 are highly associated with an increase in risk of EH, while rs6543116 is associated with a decrease risk of EH. Notably, in silico analyses suggested the G>C change of rs3821204, which located within the 3′UTR of soluble ST2 mRNA, disrupted a putative binding site for miR202‐3p. Functional analyses suggested that miR‐202‐3p significantly decreased soluble ST2‐G mRNA stability and inhibited its endogenous expression. Furthermore, we found increased plasma‐soluble ST2 (sST2) level was highly associated with CC genotype of rs3821204 in vivo. Taken together, our findings provide the first evidence that genetic variants in ST2 gene are associated with EH risk and variant rs3821204 may influence the development of EH by controlling sST2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号