首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homonuclear NMR techniques have been used to investigate the interactions of the minor groove binding agents distamycin A (Dist-A) and the related drug netropsin (Net) with three quadruplexes characterized by different groove widths: [d(TGGGGT)]4 (Q1), [d(GGGGTTTTGGGG)]2 (Q2), and d(GGGGTTGGGGTGTGGGGTTGGGG) (Q3). Netropsin has been found to be in a fast chemical exchange with all three kinds of quadruplexes, whereas Dist-A interacts tightly with Q1 and, at a less extent, with Q2. In order to determine the degree of selectivity of Dist-A for two- rather than four-stranded DNA, we titrated with Dist-A an equimolar solution of Ql and the duplex d(CGCAAATTTGCG)2 (D). This comparative 1H-NMR study allowed us to conclude that Dist-A and, consequently, Net possess higher affinity for duplex DNA.  相似文献   

2.
The growing amount of literature about G-quadruplex DNA clearly demonstrates that such a structure is no longer viewed as just a biophysical strangeness but it is instead being considered as an important target for the treatment of various human disorders such as cancers or venous thrombosis. In this scenario, with the aim of finding brand new molecular scaffolds able to interact with the groove of the DNA quadruplex [d(TGGGGT)]4, we recently performed a successful structure-based virtual screening (VS) campaign. As a result, six molecules were found to be somehow groove binders. Herein, we report the results of novel NMR titration experiments of these VS-derived ligands with modified quadruplexes, namely [d(TGGBrGGT)]4 and [d(TGGGGBrT)]4. The novel NMR spectroscopy experiments combined with molecular modelling studies, allow for a more detailed picture of the interaction between each binder and the quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC) measurements on the above-mentioned compounds revealed that 2, 4, and 6 besides their relatively small dimensions bind the DNA quadruplex [d(TGGGGT)]4 with higher affinity than distamycin A, to the best of our knowledge, the most potent groove binder identified thus far.  相似文献   

3.
Abstract

The DNA binding behavior of a tricationic cyanine dye (DiSC3+(5)) was studied using the [Poly(dA-dT)]2, [Poly(dI-dC)]2 and Poly(dA)?Poly(dT) duplex sequences and the Poly(dA) ?2Poly(dT) triplex. Optical spectroscopy and viscometry results indicate that the dye binds to the triplex structure by intercalation, to the nonalternating Poly(dA)?Poly(dT) duplex through minor groove binding and to the alternating [Poly(dA-dT)]2 duplex by a combination of two binding modes: intercalation at low concentration and dimerization within the minor groove at higher concentration. Dimerization occurs at lower dye concentrations for the [Poly(dI-dC)]2 sequence, consistent with our previous investigations on an analogous monocationic cyanine dye. [Seifert, J.L., et al. (1999) J. Am. Chem. Soc. 121, 2987–2995] These studies illustrate the diversity of DNA binding modes that are available to a given ligand structure.  相似文献   

4.
Abstract

Two novel substitutionally-inert diastereomeric ruthenium(II) cations of the form ∧-and Δ-cis-β-[Ru(RR-picchxn)(phen)]2+, where RR-picchxn is N,N'-dimethyl-/N,/N'-di(2-picolyl)-1R,2R-diaminocyclohexane and phen is 1,10-phenanthroline, have been studied with respect to their interactions with duplex DNA. NMR investigations show that both diastereomers bind to the oligonucleotide [d(CGCGATCGCG)]2 in the fast exchange regime and that binding predominantly takes place in the minor groove of the oligonucleotide, but that the governing interactions are significantly different for the two Δ and ∧ forms. Linear dichroism data support the latter interpretation, in that the relative orientations of cis-β-[Ru(RR-pic-chxn)(phen)]2+ to calf thymus DNA also are observed to differ for the Δ and ∧ diastereomers. Interpretation of these data indicates the ∧ form to be bound with the planar phen ligand closely parallel to the DNA base-pairs, but the average orientation of the phen ligand in the Δ form deviates significantly from a parallel alignment.  相似文献   

5.
Abstract

Molecular modeling and energy minimisation calculations have been used to investigate the interaction of chromium(III) complexes in different ligand environments with various sequences of B-DNA. The complexes are [Cr(salen)(H2O)2]+; salen denotes 1, 2 bis-salicylideneaminoethane, [Cr(salprn)(H2O)2]+; salprn denotes 1, 3 bis- salicylideneamino-propane, [Cr(phen)3]3+; phen denotes 1, 10 phenanthroline and [Cr(en)3]3+; en denotes eth- ylenediamine. All the chromium(III) complexes are interacted with the minor groove and major groove of d(AT)12, d(CGCGAATTCGCG)2 and d(GC)12 sequences of DNA. The binding energy and hydrogen bond parameters of DNA-Cr complex adduct in both the groove have been determined using molecular mechanics approach. The binding energy and formation of hydrogen bonds between chromium(III) complex and DNA has shown that all complexes of chromium(III) prefer minor groove interaction as the favourable binding mode.  相似文献   

6.
The binding of a Co(III) complex to the decanucleotide d(CCGAATGAGG)2 containing two pairs of G:A mismatches was studied by 2D-NMR, UV absorption, and molecular modeling. NMR investigations indicate that racemic [Co(phen)2(HPIP)]Cl3 [HPIP = 2-(2-hydroxyphenyl) imidazo [4,5-f][1,10] phenanthroline] binds the decanucleotide by intercalation: the HPIP ligand selectively inserts between the stacked bases from the minor groove at the terminal regions and from the major groove at the sheared region. Further, molecular modeling revealed that the recognition shows strong enantioselectivity: the Λ-isomer preferentially intercalates into the T6G7:A5A4 region from the DNA major groove, while Δ-isomer favors the terminal C1C2:G10G9 region and intercalates from the minor groove. Detailed energy analysis suggests that the steric interaction, especially the electrostatic effect, is the primary determinants of the recognition event. Melting experiments indicate that binding stabilizes the DNA duplex and increases the melting temperature by 9.5 °C. The intrinsic binding constant of the complex to the mismatched duplex was determined to be 3.5 × 105 M−1.  相似文献   

7.
Isothermal titration calorimetry (ITC) is a sensitive technique for probing bimolecular processes and can provide direct information about the binding affinity and stoichiometry and the key thermodynamic parameters involved. ITC has been used to investigate the interaction of the ligand H2TMPyP to the two DNA quadruplexes, [d(AGGGT)]4 and [d(TGGGGT)]4. Analysis of the ITC data reveals that porphyrin/quadruplex binding stoichiometry under saturating conditions is 1:2 for [d(AGGGT)]4 and 2:1 for [d(TGGGGT)]4, respectively.  相似文献   

8.
Abstract

CD spectra were used to compare the acid-induced structural transitions of poly[d(A)] and poly[d(C)] with those of poly[r(A)] and poly[r(C)], respectively. The types of base pairing were probably the same in the acid self-complexes of both A-containing polymers and in the acid self-complexes of both C-containing polymers. Similar base pairings were indicated by similarities in the difference CD spectra showing the changes during the first major acid- induced transitions of the polymers. Information from the CD spectra and pKa values of the transitions suggested that the transitions for the RNA polymers involved similar structural changes. The two DNA polymers were markedly different. Single-stranded poly [d(A)] was in the most stacked structure and had the lowest pKa for forming an acid self-complex. Single-stranded poly[d(C)] was in the least stacked structure and had the highest pKa for forming a protonated duplex.  相似文献   

9.
Abstract

1H-NMR, CD, and UV spectroscopy have been used to investigate the structure of PNA/DNA chimeras forming quadruplex structures. In particular, we synthesized 5′TGGG3′-t (1) and 5′TGG3′-gt (2), where lower and upper case letters indicate PNA and DNA residues, respectively. CD spectrum and all NMR data of (1) are typical of quadruplexes involving four parallel strands. UV melting profile of (1) indicates that its thermal stability is quite similar to that observed for the reference structure [d(TGGGT)]4. 1H-NMR spectrum for 5′TGG3′-gt (2) shows that this oligonucleotide is not able to fold into a single, well-defined species.  相似文献   

10.
Abstract

Complete 1H-nmr assignment has been achieved of the stoichiometric 1:1 complex of the antitumor agent mitoxantrone with the duplex oligomer [d(CpGpCpG)]2. The techniques used included 2D-COSY, 1D-NOE and 2D-HH-INADEQUATE. Comparisons of 1H and 13C chemical shift changes upon addition of drug suggest symmetrical intercalative binding to the center of the tetramer. NOE difference measurements and 31P studies suggest binding of the terminal OH groups of the side chains to the central phosphate groups such that the methylene groups are proximate to C(3)6, C(3)6 and G(4)8 base protons all in the major groove. The data suggest that the side chains bind to the neighboring base pairs from the intercalation site. This is in accord with independent evidence of G,C base preference for binding from spectroscopic and electron microscopy studies.  相似文献   

11.
The structures of the complexes formed between 9-amino-[N-(2-dimethyl-amino)butyl]acridine-4-carboxamide and d(CG5BrUACG)2 and d(CGTACG)2 have been solved by X-ray crystallography using MAD phasing methodology and refined to a resolution of 1.6 Å. The complexes crystallised in space group C222. An asymmetric unit in the brominated complex comprises two strands of DNA, one disordered drug molecule, two cobalt (II) ions and 19 water molecules (31 in the native complex). Asymmetric units in the native complex also contain a sodium ion. The structures exhibit novel features not previously observed in crystals of DNA/drug complexes. The DNA helices stack in continuous columns with their central 4 bp adopting a B-like motif. However, despite being a palindromic sequence, the terminal GC base pairs engage in quite different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. A novel intercalation complex is formed involving four DNA duplexes, four ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilised by guanine N7/cobalt (II) coordination. We discuss our findings with respect to the effects of packing forces on DNA crystal structure, and the potential effects of intercalating agents on biochemical processes involving DNA quadruplexes and strand exchanges. NDB accession numbers: DD0032 (brominated) and DD0033 (native).  相似文献   

12.
Abstract

An efficient synthesis of adenosine bearing pyrrolepolyamide 1 was achieved by coupling of 3 with 2. The CD spectra obtained at several [ligand ]/[duplex] ratios allowed verification of the formation complex of the DNA duplex [d(CGCAAATTGGC)/d(GCCAATTTGCG)] with 1.  相似文献   

13.
In our search for new DNA intercalating ligands, a novel bifunctional intercalator 11-(9-acridinyl)dipyrido[3,2-a:2′,3′-c]phenazine, acdppz (has two potentially effective intercalators via dipyridophenazine(dppz) and acridine which are linked together via C-C bond) and its corresponding Ru(II) polypyridyl complex [Ru(phen)2(acdppz)]2+ (where phen = 1,10-phenanthroline) have been synthesized and characterized. The electrochemical behaviors of the ligand and its complex have been thoroughly examined. The structure of acdppz and [Ru(phen)2(acdppz)]2+ were determined by X-ray crystallography. From the crystal structure of the complex, we found that the dppz moiety is not coplanar with the acridine ring, having a dihedral angle of 64.79 in the acdppz. The selected bond lengths and angles for the crystal structure of [Ru(phen)2(acdppz)]2+ were compared to the geometry-optimized molecular structure of [Ru(phen)2(acdppz)]2+ derived by Gaussian. The interaction of [Ru(phen)2(acdppz)]2+ with calf-thymus (CT) DNA was investigated by absorption and viscometry titration, thermal denaturation studies. The above measurements indicated that the complex binds less strongly with the CT DNA due to the intercalation by the ruthenium bound acdppz with an intrinsic binding constant of 2.6 × 105 M−1. Molecular-modeling studies also support an intercalative mode of binding of the complex to the model duplex d(CGCAATTGCG)2 possibly from the major groove with a slight preference for GC rich region. Additionally, the title complex promotes the cleavage of plasmid pBR322 DNA upon irradiation under aerobic conditions.  相似文献   

14.
Abstract

Assignment of the 1H and 31P NMR spectra of a phosphorodithioate modified oligonucleotide decamer duplex, d(CGCTTpS? 2AAGCG)2 (10-mer-S; a site of dithioate substitution is designated with the symbols pS? 2), was achieved by two-dimensional homonuclear TOCSY, NOES Y and 1H-31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. In contrast to the parent palindromic decamer sequence (1) which has been shown to exist entirely in the duplex B-DNA conformation under comparable conditions (100 mM KCI), the dithiophosphate analogue forms a hairpin loop. However, the duplex form of the dithioate oligonucleotide can be stabilized at lower temperatures, higher salt and strand concentration. The solution structure of the decamer duplex was calculated by an iterative hybrid relaxation matrix method (MORASS) combined with 2D NOESY-distance restrained molecular dynamics. These backbone modified compounds, potentially attractive antisense oligonucleotide agents, are often assumed to possess similar structure as the parent nucleic acid complex. Importantly, the refined structure of the phosphorodithioate duplex shows a significant deviation from the parent unmodified, phosphoryl duplex. An overall bend and unwinding in the phosphorodithioate duplex is observed. The structural distortion of the phosphorodithioate duplex was confirmed by comparison of helicoidal parameters and groove dimensions. Especially, the helical twists of the phosphorodithioate decamer deviate significantly from the parent phosphoryl decamer. The minor groove width of phosphorodithioate duplex 10-mer-S varies between 8.4 and 13.3 Å which is much wider than those of the parent phosphoryl decamer d(CGCTTAAGCG)2 (4.2~9.4Å). The larger minor groove width of 10-mer-S duplex contributes to the unwinding of the backbone and indicates that the duplex has an overall A-DNA-like conformation in the region surrounding the dithiophosphate modification.  相似文献   

15.
The binding of 9-hydroxyellipticine to calf thymus DNA, poly[d(A-T)]2, and poly-[d(G-C)]2 has been studied in detail by means of CD, linear dichroism, resonance light scattering, and molecular dynamics. The transition moment polarizations of 9-hydroxyelliptiycine were determined in polyvinyl alcohol stretched film. Spectroscopic solution studies of the DNA/drug complex are combined with theoretical CD calculations using the final 50 ps of a series of molecular dynamics simulations as input. The spectroscopic data shows 9-hydroxyellipticine to adopt two main binding modes, one intercalative and the other a stacked binding mode involving the formation of drug oligomers in the DNA major groove. Analysis of the intercalated binding mode in poly[d(A-T)]2 suggests the 9-hydroxyellipticine hydroxyl group lies in the minor groove and hydrogen bonds to water with the pyridine ring protruding into the major groove. The stacked binding mode was examined using resonance light scattering and it was concluded that the drug was forming small oligomer stacks rather than extended aggregates. Reduced linear dichroism measurements suggested a binding geometry that precluded a minor groove binding mode where the plane of the drug makes a 45° angle with the plane of the bases. Thus it was concluded that the drug stacks in the major groove. No obvious differences in the mode of binding of 9-hydroxyellipticine were observed between different DNA sequences; however, the stacked binding mode appeared to be more favorable for calf thymus DNA and poly[d(G-C)]2 than for poly[d(A-T)]2, an observation that could be explained by the slightly greater steric hindrance of the poly[d(A-T)]2 major groove. A strong concentration dependence was observed for the two binding modes where intercalation is favored at very low drug load, with stacking interactions becoming more prominent as the drug concentration is increased. Even at DNA : drug mixing ratios of 70:1 the stacked binding mode was still important for GC-rich DNAs. © 1998 John Wiley & Sons, Inc. Biopoly 46: 127–143, 1998  相似文献   

16.
17.
Abstract

A single-point substitution of the O4′ oxygen by a CH2 group at the sugar residue of A 6 (i.e. 2′-deoxyaristeromycin moiety) in a self-complementary DNA duplex, 5′- d(C1G2C3G4A5A6T7T8C9G10C11G12)2 ?3, has been shown to steer the fully Watson-Crick basepaired DNA duplex (1A), akin to the native counterpart, to a doubly A 6:T7 Hoogsteen basepaired (1B) B-type DNA duplex, resulting in a dynamic equilibrium of (1A)→←(1B): Keq = k1/k-1 = 0.56±0.08. The dynamic conversion of the fully Watson-Crick basepaired (1A) to the partly Hoogsteen basepaired (1B) structure is marginally kinetically and thermodynamically disfavoured [k1 (298K) = 3.9± 0.8 sec?1; δH°? = 164±14 kJ/mol;-TδS°? (298K) = ?92 kJ/mol giving a δG298°? of 72 kJ/mol. Ea (k1) = 167±14 kJ/mol] compared to the reverse conversion of the Hoogsteen (1B) to the Watson-Crick (1A) structure [k-1 (298K) = 7.0±0.6 sec-1, δH°? = 153±13 kJ/mol;-TδS°? (298K) = ?82 kJ/mol giving a δG298°? of 71 kJ/mol. Ea (k-1) = 155±13 kJ/mol]. A comparison of δG298°? of the forward (k1) and backward (k-1) conversions, (1A)→←(1B), shows that there is ca 1 kJ/mol preference for the Watson-Crick (1A) over the double Hoogsteen basepaired (1B) DNA duplex, thus giving an equilibrium ratio of almost 2:1 in favour of the fully Watson-Crick basepaired duplex. The chemical environments of the two interconverting DNA duplexes are very different as evident from their widely separated sets of chemical shifts connected by temperature-dependent exchange peaks in the NOESY and ROESY spectra. The fully Watson-Crick basepaired structure (1A) is based on a total of 127 intra, 97 inter and 17 cross-strand distance constraints per strand, whereas the double A 6:T7 Hoogsteen basepaired (1B) structure is based on 114 intra, 92 inter and 15 cross-strand distance constraints, giving an average of 22 and 20 NOE distance constraints per residue and strand, respectively. In addition, 55 NMR-derived backbone dihedral constraints per strand were used for both structures. The main effect of the Hoogsteen basepairs in (1B) on the overall structure is a narrowing of the minor groove and a corresponding widening of the major groove. The Hoogsteen basepairing at the central A 6:T7 basepairs in (1B) has enforced a syn conformation on the glycosyl torsion of the 2′- deoxyaristeromycin moiety, A 6, as a result of substitution of the endocyclic 4′-oxygen in the natural sugar with a methylene group in A 6. A comparison of the Watson-Crick basepaired duplex (1A) to the Hoogsteen basepaired duplex (1B) shows that only a few changes, mainly in α, σ and γ torsions, in the sugar-phosphate backbone seem to be necessary to accommodate the Hoogsteen basepair.  相似文献   

18.
Abstract

The molecular basis of the marked structure-activity relationship for a homologous series of DNA-binding phenoxazone drugs (ActII-ActIV) has been investigated by NMR spectroscopy and molecular mechanics. The spatial structures of the complexes between the drugs and a model deoxytetranucleotide, 5′-d(TpGpCpA), have been determined by molecular mechanics methods using homonuclear 1H-1H 2D-NOESY and heteronuclear 1H-31P (HMBC) NMR spectroscopic data. Observed intermolecular NOE contacts and equilibrium binding studies confirm that the binding affinity of the synthetic phenoxazone derivatives with d(TGCA) decreases with an increase in the number of CH2 groups in the dimethylami- noalkyl side chains, i.e., ActII > ActIII > ActIV, in agreement with the observed biological activity of these compounds. Molecular mechanics calculations of the spatial structures of the intercalated complexes of ActII-ActIV with d(TGCA) indicate that the different binding constants of the phenoxazone derivatives with the DNA oligomer are due to the different degrees of intercalation of the chromophore and the different steric arrangements of aminoalkyl side chains in the minor groove of the tetramer duplex; this results in different distances between the negatively-charged phosphates of the DNA duplex and the terminal positively-charged N(CH3)2 groups of the side chains.  相似文献   

19.
The solution structure and hydration of the chimeric duplex [d(CGC)r(aaa)d(TTTGCG)]2, in which the central hybrid segment is flanked by DNA duplexes at both ends, was determined using two-dimensional NMR, simulated annealing and restrained molecular dynamics. The solution structure of this chimeric duplex differs from the previously determined X-ray structure of the analogous B-DNA duplex [d(CGCAAATTTGCG)]2 as well as NMR structure of the analogous A-RNA duplex [r(cgcaaauuugcg)]2. Long-lived water molecules with correlation time τc longer than 0.3 ns were found close to the RNA adenine H2 and H1′ protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA–DNA junction but not with the other two thymines (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA–DNA junction adopts an O4′-endo sugar conformation, while the other DNA residues including 3C in the DNA–RNA junction, adopt C1′-exo or C2′-endo conformations. The exchange rates for RNA C2′-OH were found to be ~520 s–1. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2, which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2 is wider than its B-DNA analog but narrower than that of the A-RNA analog. It was further confirmed by its titration with the minor groove binding drug distamycin. A possible 2:1 binding mode was found by the titration experiments, suggesting that this chimeric duplex contains a wider minor groove than its B-DNA analog but still narrow enough to hold two distamycin molecules. These distinct structural features and hydration patterns of this chimeric duplex provide a molecular basis for further understanding the structure and recognition of DNA·RNA hybrid and chimeric duplexes.  相似文献   

20.
Unfolding of DNA quadruplexes induced by HIV-1 nucleocapsid protein   总被引:4,自引:1,他引:3  
The human immunodeficiency virus type 1 nucleocapsid protein (NC) is a nucleic acid chaperone that catalyzes the rearrangement of nucleic acids into their thermodynamically most stable structures. In the present study, a combination of optical and thermodynamic techniques were used to characterize the influence of NC on the secondary structure, thermal stability and energetics of monomolecular DNA quadruplexes formed by the sequence d(GGTTGGTGTGGTTGG) in the presence of K+ or Sr2+. Circular dichroism studies demonstrate that NC effectively unfolds the quadruplexes. Studies carried out with NC variants suggest that destabilization is mediated by the zinc fingers of NC. Calorimetric studies reveal that NC destabilization is enthalpic in origin, probably owing to unstacking of the G-quartets upon protein binding. In contrast, parallel studies performed on a related DNA duplex reveal that under conditions where NC readily destabilizes and unfolds the quadruplexes, its effect on the DNA duplex is much less pronounced. The differences in NC's ability to destabilize quadruplex versus duplex is in accordance with the higher ΔG of melting for the latter, and with the inverse correlation between nucleic acid stability and the destabilizing activity of NC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号