首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of aryl ester prodrugs of cyclic HPMPC have been synthesized and their physicochemical properties, pharmacokinetics and metabolism have been evaluated. Chemical stability was dependent on the orientation of the exo-cyclic ligand; the equatorial isomers were 5.4 to 9.4 fold more reactive than the axial isomers. The oral bioavailability of cyclic HPMPC from the aryl ester prodrugs ranged from 11.2% for o-pentylphenyl cyclic HPMPC to 46.3% for butylsalicylyl cyclic HPMPC. Cyclic HPMPC was the major metabolite observed for all the salicylyl ester prodrugs. Cidofovir accounted for 2 to 12% of the total plasma AUC for butyl-, cyclohexyl- and phenethyl-salicylyl esters of cyclic HPMPC. Intact prodrug or the corresponding monosalicylyl esters of cidofovir each accounted for less than 10% of the total AUC for salicylyl ester prodrugs.  相似文献   

2.
Cidofovir (HPMPC) is a broad-spectrum anti-viral agent whose potential, particularly in biodefense scenarios, is limited by its low oral bioavailability. Two prodrugs (3 and 4) created by conjugating ethylene glycol-linked amino acids (L-Val, L-Phe) with the cyclic form of cidofovir (cHPMPC) via a P-O ester bond were synthesized and their pH-dependent stability (3 and 4), potential for in vivo reconversion to drug (3), and oral bioavailability (3) were evaluated. The prodrugs were stable in buffer between pH 3 and 5, but underwent rapid hydrolysis in liver (t(1/2) = 3.7 min), intestinal (t(1/2) = 12.5 min), and Caco-2 cell homogenates (t(1/2) = 20.2 min). In vivo (rat), prodrug 3 was >90% reconverted to cHPMPC. The prodrug was 4x more active than ganciclovir (IC50 value, 0.68 microM vs 3.0 microM) in a HCMV plaque reduction assay. However, its oral bioavailability in a rat model was similar to the parent drug. The contrast between the promising activation properties and unenhanced transport of the prodrug is briefly discussed.  相似文献   

3.
Acyclic nucleoside phosphonates (ANPs), such as (S)-1-[(3-hydroxy-2-phosphonomethoxy)propyl)]cytosine (HPMPC), are an important group of broad-spectrum antiviral agents with activity against DNA viruses. In this report, we present the in vitro potencies of novel ANPs against gammaherpesviruses, including Kaposi''s sarcoma-associated herpesvirus, Epstein-Barr virus (EBV), and three animal gammaherpesviruses. 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine (HPMP-5-azaC), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-3-deazaadenine (3-deaza-HPMPA), and their cyclic derivatives have emerged as highly potent antigammaherpesvirus agents. Interestingly, cyclic prodrugs of ANPs exhibited reduced activities against EBV strain P3HR-1, but not against EBV strain Akata. Cell culture metabolism studies with HPMPC and cyclic HPMPC revealed that these differences were attributable to an altered drug metabolism in P3HR-1 cells after EBV reactivation and, more specifically, to a reduced hydrolysis of cyclic HPMPC by cyclic CMP phosphodiesterase. We did not correlate this effect with phosphodiesterase downregulation, or to functional mutations. Instead, altered cyclic AMP levels in P3HR-1 cells indicated a competitive inhibition of the phosphodiesterase by this cyclic nucleotide. Finally, both HPMPC and HPMP-5-azaC emerged as highly effective inhibitors in vivo through significant inhibition of murine gammaherpesvirus replication and dissemination. With the current need for potent antigammaherpesvirus agents, our findings underline the requirement of appropriate surrogate viruses for antiviral susceptibility testing and highlight HPMP-5-azaC as a promising compound for future clinical development.  相似文献   

4.
The toxicological effects on house flies of several tri-esters of phosphoric acid and a di-ester of phosphsphonic acid were examined. Certain esters were converted to biologically active metabolites. At least one o-tolyl group and another aryl substituent were necessary for the ester to show any distinctive biological effects. The active metabolites were confirmed by chromatography to be saligenin cyclic phosphates.  相似文献   

5.
Even number fatty acid residues—docosanoyl (behenoyl) and stearoyl were selected for introduction to the N4-position of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine) (HPMPC, cidofovir), and its 5-azacytosine counterpart, (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine) (HPMP-5-azaC) with the aim to prepare a new type of lipophilic prodrugs. The study on the influence of these modifications to the stability and biological activity of both antivirals was performed. Different reactivity of both systems towards acylation reactions was also found: the 4-NH2 group of cidofovir was more reactive compared to that of HPMP-5-azaC. In 5-azacytosine derivatives, we found mostly a destabilizing effect of the N4-acylation but this could be compensated by a positive influence of the esterification of the phosphonate group. Chemical stability of the 5-azacytosine moiety in the HPMP series is increasing in the following order: HPMP-5-azaC < cyclic HPMP-5-azaC < HPMP-5-azaC esters. From the view of prodrug development, the best chemical stability was observed in case of the double prodrug 7: the N4-behenoyl derivative of the hexadecyloxyethyl ester of cyclic HPMP-5-azaC. The free phosphonic acid (N4-behenoyl-HPMPC) appeared to be a more potent and selective inhibitor of herpesvirus replication than the parent HPMPC derivative.  相似文献   

6.
Bis(4-chloro-2-ethylphenyl) phenylphosphonate was metabolically transformed into the cor-responding cyclic ester, i.e., 6-chloro-4-methyl-2-phenyl-4/f-1,3,2-benzodioxaphosphorin 2-oxide, in houseflies in vivo. In a p-unsubstituted analog, hydroxylation at the para-position of an ester linkage occurred preferably to alpha-hydroxylation with subsequent cyclization. The cyclization was diastereomerically selective, giving predominantly the cis ester. The biological activities of synthesized and related cyclic esters were similar to but weaker than saligenin cyclic phosphorus esters lacking a methyl group at the 4-position.  相似文献   

7.
Some cyclic phosphorus esters were prepared from o-hydroxybenzyl alcohol and its analogues. They reacted with nucleophilic agents to open their heterocyclic ring at P-O-C (aryl) bond. Phosphate ion catalyzed the hydrolysis of the cyclic phosphorus esters under a mild condition. An intermediate hydrolysate was separated by paper electrophoresis.  相似文献   

8.
An esterase with excellent stereoselectivity for (+)-trans-ethyl chrysanthemate was purified to homogeneity from Arthrobacter globiformis SC-6-98-28. The purified enzyme hydrolyzed a mixture of ethyl chrysanthemate isomers stereoselectively to produce (+)-trans-acid with 100% stereoisomeric purity. The apparent molecular weight of the purified enzyme was 43,000 on SDS–polyacrylamide gel electrophoresis, and 94,000 on gel filtration chromatography. The optimum conditions for the ester hydrolysis were pH 10.0 at 45°C. The purified esterase hydrolyzed short-chain fatty acid esters, but did not have detectable activity on long-chain water-insoluble fatty acid esters. The enzyme activity was inbibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride.  相似文献   

9.
This study details the development of matrix metalloproteinase inhibitor prodrugs (proMMPi) that are activated in the presence of reactive-oxygen species (ROS). Conventional matrix metalloproteinase inhibitors (MMPi) utilize a zinc-binding group (ZBG) that chelates to the catalytic zinc(II) ion of matrix metalloproteinases (MMPs) to inhibit their activity. To create ROS-sensitive prodrugs, sulfonate esters were used as a protecting group for the ZBG to block their metal binding ability. Surprisingly, these sulfonate esters were found to be cleaved by H2O2 only when the ZBG contained an N-oxide donor atom moiety. Sulfonate ester derivatives of full-length MMPi based on these ROS-triggerable systems were synthesized. It was found that proMMPi with sulfonate ester protecting groups showed relatively high rates of cleavage in the presence of H2O2 to release the active MMPi. In vitro MMP inhibition studies confirmed a significant increase in inhibitory activity of proMMPi upon addition of H2O2, demonstrating the use of sulfonate esters to act as cleavable triggers for ROS-activated prodrugs.  相似文献   

10.
Diunsaturated, C-18 cyclic fatty acid methyl esters (CFAME) were previously synthesized as model derivatives for characterization and biological evaluation of cyclic fatty acids (CFA) formed in heat-abused vegetable oils. The propyl substituted, diunsaturated CFMAE (I) was selectively reduced to prepare two monounsaturated, positional isomers with the double bond located either in the ester substituent (alkene isomer II) or in the ring (cyclohexene isomer III). The stereochemistry of these monounsaturated products was investigated by capillary GLC and NMR. Capillary GLC showed that each positional isomer was a mixture of two ‘ring’ isomers (i.e. a mixture of two isomers with side chains either cis or trans). The ring double bond in diene I was readily hydrogenated with various metal catalysts, and no cyclohexene isomer III was detected in the product. Platinum oxide poisoned with Ph3P was the most selective catalyst examined to convert diene I to monoene II. Diimide reduction was the only method foud to reduce selectively the double bond in the ester side chain of diene I. This diimide reduction was facilitated when the Z-double bond in the side chain was isomerized to E-double bond with p-toluenesulfinic acid. Cyclohexene isomer III and alkene isomer II were separated by argentation HPLC. These two isomeric monoenes were characterized by GC-MS, capillary GLC, micro-ozonolysis, IR and NMR. Catalytic hydrogenation with Ph3P-poisoned PtO2 and diimide reduction of the diunsaturated cyclic ester may provide useful methods to synthesize and label monounsaturated cyclic fatty esters.  相似文献   

11.
Naproxen (nap) is belonging to Non-steriodal anti-inflammatory drugs (NSAIDs) group of drugs that characterized by their free carboxylic group. The therapeutic activity of nap is usually accompanied by GI untoward side effects. Recently synthesized naproxen amides of some amino acid esters prodrugs to mask the free carboxylic group were reported. Those prodrugs showed a promising colorectal cancer chemopreventive activity. The current study aims to investigate the fate and hydrolysis of the prodrugs kinetically in different pH conditions, simulated gastric and intestinal fluids with pHs of 1.2, 5.5 and 7.4 in vitro at 37 °C. The effect of enzymes on the hydrolysis of prodrugs was also studied through incubation of these prodrugs at 37 °C in human plasma and rat liver homogenates. The pharmacokinetic parameters of selected prodrugs and the liberated nap were studied after oral and intraperitoneal administration in male wistar rats. The results showed the hydrolysis of naproxen amides of amino acid esters to nap through two steps first by degradation of the ester moiety to form the amide of nap with amino acid and the second was through the degradation of the amide link to liberate nap. The two reactions were followed and studied kinetically where K1 and K2 (rate constants of degradation) is reported. The hydrolysis of prodrugs was faster in liver homogenates than in plasma. The relative bioavailability of the liberated nap in vivo was higher in case of prodrug containing ethyl glycinate moiety than that occupied l-valine ethyl ester moiety. Each of nap. prodrugs containing ethyl glycinate and l-valine ethyl ester moieties appears promising in liberating nap, decreasing direct GI side effect and consequently their colorectal cancer chemopreventive activity.  相似文献   

12.
Species differences and substrate specificities for the stereoselective hydrolysis of fifteen O-acyl propranolol (PL) prodrugs were investigated in pH 7.4 Tris-HCl buffer and rat and dog plasma and liver subfractions. The (R)-isomers were preferentially converted to propranolol (PL) in both rat and dog plasma with the exception of isovaleryl-PL in rat plasma, although the hydrolytic activities of prodrugs in rat plasma were 5–119-fold greater than those in dog plasma. The prodrugs with promoieties (C(=O)CH(R)CH3) based on propionic acid showed marked preference for hydrolysis of the (R)-enantiomers in plasma from both species (R/S ratio 2.5–18.2). On the other hand, the hepatic hydrolytic activities of prodrugs were greater in dog than rat, especially in cytosolic fractions. The hydrolytic activity was predominantly located in microsomes of the liver in rat, while the cytosol also contributed to hepatic hydrolysis in dog. Hepatic microsomal hydrolysis in dog showed a preference for the (R)-isomers except acetyl- and propionyl-PL. Interestingly, in rat liver all types of prodrugs with substituents of small carbon number showed (S)-preference for hydrolysis. The hydrolyses of (R)- and (S)-isomers of straight chain acyl esters in rat liver microsomes were linearly and parabolically related with the carbon number of substituents, respectively, while these relationships were linear for both isomers in dogs. Chirality 9:661–666, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The externally controlled cleavage of covalently linked prodrugs, proteins, or solid-phase formulation vehicles offers potential advantages for controlled drug or gene delivery. A series of o-nitrobenzyl ester compounds (1-8) were synthesized to allow a systematic study of photolability. The o-nitrobenzyl ester was strictly required for photolability, while imido esters were not photolabile. The degradation kinetics of 1-o-phenylethyl ester was an order of magnitude faster than that of o-nitrobenzyl ester. Tosylate, phosphate, and benzoate derivatives of 1-o-nitrophenylethyl displayed similar photolability (>80% decomposition within 10 min at 3.5 mW/cm2 at 365 nm). O-o-Nitrobenzyl O',O'-diethyl phosphate displayed the fastest decomposition at photoirradiation condition (3.5 mW/cm2, 365 nm) suitable for biological systems. We report the synthesis and photo-decomposition of 1-o-nitrophenylethyl derivatives amenable for the creation of photolabile prodrugs or formulation particles for drug depots, DNA condensation, or tissue engineering applications.  相似文献   

14.
The meso- and (±)-isomers of dimethylmyleran (DMM) have been synthesised and their chemical reactivity towards selected nucleophiles has been investigated. Both isomers react in vitro by hydrolysis to give 2,5-dimethyltetrahydrofuran and with the thiol groups of cysteine, cysteine ethyl ester and glutathione forming 2,5-dimethyltetrahydrothiophene. As each of these cyclic compounds exists in the cis- and trans-configurations, their production in stereochemically quantitative yields from meso- and (±)-dimethylmyleran respectively, indicates that both isomers react by a bimolecular process and not a unimolecular one as has been generally accepted. A comparison of the activity of the isomers with that of Myleran on anti-fertility action, neutrophildepressant activity and effect on the weight response suggests that these esters could exert their biological actions in vivo by the same mechanism.  相似文献   

15.
Tertiary sulfonamidomethyl esters of benzylpenicillin (4) were synthesised and evaluated as a new class of potential prodrugs for beta-lactam antibiotics. Their hydrolysis in aqueous buffers was studied by HPLC and reveal a U-shaped pH rate profile with a pH-independent process extending from ca. pH 2 to ca. pH 10. This pathway is characterised by kinetic data that are consistent with a unimolecular mechanism involving rate-limiting iminium ion formation and penicillinoate expulsion. Benzylpenicillin and the corresponding sulfonamide are the ultimate products detected and isolated, indicating that beta-lactam ring opening is much slower than ester hydrolysis. As expected from the high reactivity, benzylpenicillin esters (4) displayed similar in vitro antibacterial activity to benzylpenicillin itself. Compared to the benzylpenicillin derivatives, sulfonamidomethyl esters of benzoic, clofibric and valproic acids display a much higher stability, giving rise to a Br?nsted beta1g value of -0.96 and suggesting that tertiary sulfonamidomethyl esters may be useful prodrugs for carboxylic acid drugs with pKa > 4.  相似文献   

16.
LC/MS assays were developed to determine the plasma and intracellular concentrations of two aryl phosphoramidate prodrugs of the nucleotide analog 9-[2-R-(phosphonomethoxy)propyl]adenine. LC/MS was used to demonstrate the presence of high concentrations of PMPA in peripheral blood mononucleocytes following oral administration of prodrugs in dogs. High concentrations of PMPA and active metabolite were detected in MT-2 cells incubated with prodrug using an ion-pairing LC/MS assay.  相似文献   

17.
A series of MENT esters (3-71) was designed, prepared and tested to study the structure-activity relationship (SAR) of the hydrolysis rate with human liver microsomes of these prodrugs. Compounds were obtained covering a wide range of metabolic stability. The results are useful for the proper selection of prodrugs for different pharmaceutical formulations to deliver the potent and prostate-sparing androgen MENT. The MENT esters can especially be administered for male hormone replacement therapy and male contraception. Comparative molecular field analysis (CoMFA) was applied to a dataset of 28 esters, for which ED50 values could be obtained. The CoMFA model where the electrostatic and H-bond molecular fields were combined turned out to be most predictive. Despite the limited size of the dataset, CoMFA can help to rationalize the SAR of the ester hydrolysis rate of ester prodrugs of MENT.  相似文献   

18.
Acyl-CoA:cholesterol acyltransferase was found predominantly (85%) in RNA-rich microsomes, the rest being in RNA-poor and smooth microsomes. However, the esterified cholesterol concentration of smooth microsomes was 2-fold greater than that of RNA-rich microsomes, suggesting the possibility of an interaction between RNA-rich and smooth microsomes. The distribution of cholesteryl ester between microsome subfractions was examined after incubation of a mixture of RNA-rich and smooth microsomes with [1-14C]palmitoyl-CoA. Based upon specific acyl-CoA:cholesterol acyltransferase activities of the individual fractions, only 31 +/- 3% of the total cholesteryl ester radioactivity should have been found in the smooth component. However, the smooth microsomes contained 54 +/- 3% (p < 0.01) of the radioactive cholesteryl esters. The entrapment of radioactive cholesteryl ester in the smooth microsomes could not be accounted for by passive transfer of cholesteryl ester from RNA-rich microsomes to smooth microsomes. It is proposed that cholesterol in the smooth microsomal membranes may have been esterified by acyl-CoA:cholesterol acyltrasferase located on the surface of RNA-rich microsomes with the resulting cholesteryl ester retained in the smooth microsomes. This hypothesis was strengthened by the observation that acyl-CoA:cholesterol acyl-transferase was located on the cytoplasmic surface of the RNA-rich microsomal vesicle.  相似文献   

19.
A series of prodrugs of stavudine were synthesized in an effort to enhance spectrum of chemotherapeutic properties for the effective treatment of HIV/AIDS. The 5'-OH function of stavudine was esterified with ciprofloxacin, norfloxacin, isoniazide, pyrazinamide, piperazine and dimethylamine acetic acid. The anti-HIV-1 activity of the esters was determined in CEM cell line and stavudine ester bearing piperazine acetic acid was found to be the most potent compound with a selective index of >15,723. Stavudine prodrug bearing ciprofloxacin and norfloxacin acetic acid showed 100% inhibition against Mycobacterium tuberculosis H(37)Rv at 6.25 microg/mL. The prodrugs also exhibited antibacterial activity against 24 pathogenic bacteria. In vitro hydrolysis of the various esters in human plasma indicated that these agents were relatively stable toward plasma esterases with t(1/2) ranging from 20-240 min.  相似文献   

20.
Dimethyl/diethyl carbonate was adopted as extraction solvent and transesterification reagent at the same time for in situ lipase-catalyzed reactive extraction of oilseeds for biodiesel production in this work. Fatty acid methyl esters and ethyl esters were respectively obtained with higher yields than those achieved by conventional two-step extraction/transesterification. The augment ranged from 15.7% to 31.7%. The key parameters such as solvent/seed ratio and water content were further investigated to find their effects on the in situ reactive extraction. The highest yields of Pistacia chinensis Bunge methyl ester, P. chinensis Bunge ethyl ester, Jatropha curcas L methyl ester and J. curcas L ethyl ester could attain 89.6%, 90.7%, 95.9% and 94.5%, respectively under the optimized conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号