首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanosine 3′,5′-monophosphate (cGMP) is an intracellular messenger in various kinds of cell. We investigated the regulation of cGMP production by nitric oxide (NO) in rabbit submandibular gland cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose- and time-dependent manner, but the α-agonist phenylephrine, substance P and the β-agonist isoproterenol failed to evoke cGMP production. In fura-2-loaded cells, methacholine induced an increase in intracellular Ca2+ ([Ca2+]i) in a concentration-dependent manner, which was similar to that for cGMP production. When the external Ca2+ was chelated with EGTA, methacholine failed to induce cGMP production. Ca2+ ionophore A23187 and thapsigargin, which induce the increase in [Ca2+]i without activation of Ca2+-mobilizing receptors, mimicked the effect of methacholine. cGMP production induced by methacholine, A23187 and thapsigargin was clearly inhibited by NG-nitro- -arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS). S-Nitroso-N-acetyl- -penicillamine (SNAP), a NO donor, induced cGMP formation. In the lysate of rabbit submandibular gland cells, Ca2+-regulated nitric oxide synthase activity was detected. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is regulated by NO generation via the increase in [Ca2+]i.  相似文献   

2.
Increases inguanosine 3',5'-cyclic monophosphate (cGMP) induced bynitric oxide (NO), nitrovasodilators, and atrial peptides correlatewith relaxation of vascular smooth muscle. Relaxation of myometrialsmooth muscle by increases in cGMP, however, has required unusuallyhigh concentrations of the cyclic nucleotide. We tested the hypothesisthat the sensitivity of myometrium to relaxation by cGMP is increasedduring pregnancy. Aortic smooth muscle was more sensitive to relaxationby cGMP than myometrial tissues, and, contrary to our hypothesis,myometrium from pregnant rats was least sensitive. Although levels ofcGMP were elevated after treatment with the NO donor,S-nitroso-N-acetylpenicillamine, relaxation of myometrial tissues obtained from pregnant rats occurred only at extraordinarily high concentrations. The levels ofcGMP-dependent protein kinase (PKG) were significantly decreased inmyometrium from pregnant rats compared with myometrium from nonpregnantcycling animals or aortic smooth muscle. Administration of estradiol to ovariectomized rats increased myometrial PKG expression, andprogesterone antagonized this response. We conclude that1) myometrial tissues from pregnantrats are not sensitive to relaxation by cGMP and 2) this insensitivity to cGMP isaccompanied by progesterone-mediated decreases in the level of PKGexpression.

  相似文献   

3.
To investigate whether cyclic GMP (cGMP) would mediate, in an intracellular Ca2+ -dependent manner, coupling of auxin to stomatal opening, the stomatal opening responses to the auxin indolyl-3-butyric acid (IBA) and to the cGMP membrane-permeable derivative 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) were compared in epidermal strips of Commelina communis. In this comparison were studied possible effects of intracellular Ca2+ modulators, GTP-binding protein (G-protein) modulators and selective inhibitors of enzymatic reactions which use or generate cGMP. The stomatal response to IBA was almost similarly reversed by the Ca2+ buffer 1,2-bis(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA), the intracellular Ca2+-release inhibitors ruthenium red and procaine, the inactive cGMP analog Rp-8-bromoguanosine 3,5-cyclic monophosphorothioate (Rp-8-Br-cGMPS), the inhibitor of cGMP-producing guanylyl cyclase LY 83583, the G-protein inhibitor mas17 and the G-protein antagonist pGlu-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH2. Comparison with stomatal opening in response to 8-Br-cGMP, which was almost completely suppressed by either BAPTA, ruthenium red, procaine or Rp-8-Br-cGMPS, strongly suggests that cGMP acts downstream of G-protein activation as a second messenger for IBA signal transduction and that the cGMP pathway likely depends on cytosolic Ca2+signaling. Received: 8 November 1997 / Accepted: 6 March 1998  相似文献   

4.
《Life sciences》1996,59(14):PL227-PL234
Effect of NO induced by interleukin-1 (IL-1) or IL-1/interferon-γ (IL-1/IFN-γ) was investigated on cell growth using primary cultures of human thyrocytes. Cytokine-induced NO production was associated not only with an increase in cyclic GMP (cGMP) formation but also with an inhibition of cell growth determined by bromo-deoxyuridine (Br-dU) incorporation into DNA. When NO synthesis was blocked by NG-monomethyl-L-arginine (L-MMA), cGMP formation was prevented in parallel with NO production and inversely a restoration of cell growth was evident. S-nitroso-N-acetyl-penicillamine, a NO donor, but not a cell permeable cGMP analog, 8-bromo-cGMP, inhibited cell growth in a dose-dependent manner. The present findings strongly indicate that endogenous NO produced by the cytokine treatment as well as exogenous NO, has a cGMP-independent inhibitory action on human thyrocyte growth.  相似文献   

5.
The response of guanylate cyclase to addition of extracellular stimuli is well documented. Here we report for the first time the response of guanylate cyclase to removal of stimuli. Three methods were employed to terminate rapidly a stimulus of folic acid. (1) Addition of a highly active folate deaminase preparation, or (2) 12-fold dilution of the stimulated cell suspension, or (3) addition of an excess concentration of a non-agonistic derivative of folic acid, i.e., 2-deaminofolic acid, which chases the folate agonist from its cell-surface receptors. Accumulation of cGMP terminated instantaneously upon addition of deaminase, but degradation of the synthesized cGMP was not observed until 10–12 s after stimulation. Also in a cGMP phosphodiesterase-lacking ‘streamer’ mutant an instantaneous termination of further cGMP accumulation was observed upon stimulus removal. This suggests that the termination of cGMP accumulation is due to inactivation of guanylate cyclase instead of a steady state of cGMP synthesis and degradation. Further accumulation of cGMP was approx. 75% reduced upon dilution of a cell suspension after stimulation with both agonists. Stimulation by 300 nM folic acid or by 30 nM N10-methylfolic acid (a more potent agonist) yielded identical results. However, upon addition of deaminofolic acid the accumulation of cGMP continued normally if the cells had been stimulated with N10-methylfolic acid, but only slightly in the case of a folic acid stimulus. The effect of stimulus duration on desensitization was monitored; it was observed that 50% desensitization was induced by stimulation for 1 s, while 4 s was sufficient for maximal desensitization. Short stimuli were observed to elicit high levels of desensitization without much excitation of guanylate cyclase. A desensitization-like process was observed at the level of the folate-binding chemotactic receptors as well. Relationships between the cGMP response data and folic acid receptor kinetics are discussed.  相似文献   

6.
We investigated the mechanism of guanosine 3′,5′-monophosphate (cGMP) production in rabbit parotid acinar cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose-dependent manner but not isoproterenol, a β-adrenergic receptor stimulant. Methacholine-stimulated cGMP production has been suggested to be coupled to Ca2+ mobilization, because intracellular Ca 2+ elevating reagents, such as thapsigargin and the Ca2+ ionophore A23187, mimicked the effect of methacholine. The cGMP production induced by Ca2+ mobilization has also been suggested to be coupled to nitric oxide (NO) generation because the effects of methacholine, thapsigargin and A23187 on cGMP production were blocked by NG-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS), and hemoglobin, a scavenger of nitric oxide (NO). Sodium nitroprusside (SNP), a NO donor, stimulated cGMP production. Furthermore, methacholine stimulated NO generation, and NOS activity in the cytosolic fraction in rabbit parotid acinar cells was exclusively dependent on Ca2+. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is coupled to NO generation via Ca2+ mobilization.  相似文献   

7.
We studied the effect of endothelins (ETs) on receptor-mediated NO/cGMP signaling in rat arcuate nucleus–median eminence (AN-ME) fragments, an hypothalamic structure known to contain a rich plexus of nitric oxide synthase (NOS)-containing neurons and fibers together with densely arranged ETB-receptor-like immunoreactive fibers. NOS activity was determined measuring the conversion of [3H] arginine to [3H] citrulline, as an index of NO produced. cGMP production was determined by radio immunoassay. ET-1, ET-3, and the selective ETB receptor agonist, IRL1620, significantly increased cGMP formation and NOS activity. Preincubation of AN-ME fragment with L-arginine analog, N-nitro-L-arginine (L-NAME), inhibited ET-1 or IRL1620-stimulated cGMP formation. The addition of the selective ETB receptor antagonist, BQ788, blocked ET-1-, ET-3-, or IRL1620-induced increase in NOS activity and cGMP generation, while BQ123, a selective ETA receptor antagonist, was ineffective. Our results demonstrate that in whole rat AN-ME fragments, ETs stimulate NO/cGMP signaling pathway through the interaction with the ETB receptor subtype, supporting the concept that ETs may represent an important regulator of reproductive and neuroendocrine function.  相似文献   

8.
GABA is the inhibitory neurotransmitter in most brain stem nuclei. The properties of release of preloaded [3H]GABA were now investigated with slices from the mouse brain stem under normal and ischemic (oxygen and glucose deprivation) conditions, using a superfusion system. The ischemic GABA release increased about fourfold in comparison with normal conditions. The tyrosine kinase inhibitor genistein had no effect on GABA release, while the phospholipase inhibitor quinacrine reduced both the basal and K+-evoked release in normoxia and ischemia. The activator of protein kinase C (PKC) 4β-phorbol 12-myristate 13-acetate had no effects on the releases, whereas the PKC inhibitor chelerythrine reduced the basal release in ischemia. When the cyclic guanosine monophosphate (cGMP) levels were increased by superfusion with zaprinast and other phosphodiesterase inhibitors, GABA release was reduced under normal conditions. The NO donors S-nitroso-N-acetylpenicillamine (SNAP) and hydroxylamine (HA) enhanced the basal and K+-stimulated release by acting directly on presynaptic terminals. Under ischemic conditions GABA release was enhanced when cGMP levels were increased by zaprinast. This effect was confirmed by inhibition of the release by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The NO-producing agents SNAP, HA, and sodium nitroprusside potentiated GABA release in ischemia. These effects were reduced by the NO synthase inhibitor NG-nitro-l-arginine, but not by ODQ. The results show that particularly NO and cGMP regulate both normal and ischemic GABA release in the brain stem. Their effects are however complex.  相似文献   

9.
In order to examine the cyclic nucleotides (cGMP) role in carcinoma growth and invasivity. We analyzed two cell lines, LSHT29 and 17GT, and tissues in patients with carcinoma and malignant tissues with (N+) and without (N-) lymph node metastases. Higher cGMP levels in pathological samples suggest a strong correlation between intracellular cGMP concentration and carcinoma progression.  相似文献   

10.
Abstract: In this study, the interaction between 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) in [3H]adenine-or [3H]-guanine-prelabelled adult guinea-pig cerebellar slices was investigated. Basal levels of [3H]cGMP were enhanced by forskolin, although no plateau was reached over the concentration range tested (0.1-100 μM). However, forskolin elicited a concentration-dependent, saturable potentiation of sodium nitroprusside (SNP)-stimulated [3H]cGMP accumulation (forskolin EC50 value of 0.98 β 0.23 μM; 10 μM forskolin produced a 1.8 β 0.3-fold potentiation of the SNP response at 2.5 min). The forskolin potentiation was observed at all concentrations of SNP tested (0.001-10 mM). forskolin also elicited a large stimulation of [3H]-cAMP in [3H]adenine-prelabelled guinea-pig cerebellar slices; however, 1,9-dideoxyforskolin failed to elicit either a [3H]cAMP response or a potentiation of the SNP-induced [3H]cGMP response at concentrations up to 100 μM. Pretreatment with oxyhaemoglobin (50 μM) inhibited the response to SNP (1 mM) and forskolin (10 μM), as well as the response evoked by the combination of SNP and forskolih. AG-Nitro-l -arginine (100 μM) inhibited the response to forskolin alone, but did not change the response to SNP or the potentiation induced by forskolin on SNP-induced [3H]cGMP levels. The protein kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7; 100 μM), staurosporine (10 μM), polymyxin B (100 μM), and Ro 31-8220 (10 μM) had no effect on the [3H]cGMP response to either SNP or the combination of SNP plus forskolin. N6,2′-Dibutyryl cAMP, at concentrations up to 10 mM, was also without effect on [3H]cGMP levels induced by SNP. 3-lso-butyl-1-methylxanthine reproduced the effect of forskolin on SNP-induced [3H]cGMP levels, but a less-than-additive effect was observed when the response to SNP was studied in the presence of forskolin and 3-isobutyl-1-methylxanthine. Taken together, these results infer that crosstalk between cyclic nucleotides takes place in guinea-pig cerebellar slices, and that cAMP may regulate cGMP-mediated responses in this tissue.  相似文献   

11.
N-nitro-l-arginine (NG-nitro-l-arginine) is a potent nitric oxide synthase inhibitor which crosses the blood brain barrier and does not undergo extensive metabolism in vivo. In this study, effect of chronic pretreatment of N-nitro-l-arginine (75 mg/kg, i.p., twice daily for 7 days) on the harmaline- (100 mg/kg, s.c.), picrotoxin- (4 mg/kg, s.c.), pentylenetetrazole- (50 mg/kg, i.p.), andl-glutamic acid- (400 g/10 l/mouse, i.c.v.) induced increase in cerebellar cGMP was assessed. All the four drugs produced significant increase in cerebellar cGMP in vehicle pretreated control animals. Cerebellar cGMP increase induced by harmaline, picrotoxin, andl-glutamic acid was attentuated in N-nitro-l-arginine pretreated animals. These results indicate that in vivo cerebellar cGMP levels are increased by the prototype excitatory amino acid receptor agonist,l-glutamic acid and also by the drugs which augment the excitatory amino acid transmission. Furthermore, parenteral chronic administration of N-nitro-l-arginine blocks NO synthase in the brain and hence cerebellar cGMP response in chronic N-nitro-l-arginine treated animals could be used as a tool to assess the physiological functions of nitric oxide in vivo.Part of this work was presented at the Experimental Biology 93 FASEB Meeting at New Orleans, March 1993.  相似文献   

12.
Endotoxin and other bacterial products induce the release of mediators which alter the circulation and cellular metabolism. Recent evidence suggests nitric oxide (NO) is one such mediator. The proposed mechanism by which NO produces hypotension is the activation of guanylate cyclase with subsequent biosynthesis of 3′:5′ cyclic guanosine monophosphate (cGMP). We studied the production of cGMP during Escherichia coli-induced septic shock in two experiments; the first with sepsis alone and the second using NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of nitric oxide synthase. Animals in both experiments experienced significant bacteremia (P < 0.05), endotoxemia (P < 0.05), and lactic acidosis (P < 0.03). Mean arterial blood pressure decreased (P < 0.03) and heart rate increased (P < 0.05) within both groups but did not differ between groups. A significant increase in the production of circulating whole blood cGMP occurred at 3-5 h (P < 0.03). There was significantly less cGMP produced by the L-NMMA-treated animals (P < 0.01). These results demonstrate an elevation in cGMP during septic shock which is attenuated by the addition of L-NMMA. This suggests that NO may be present during gram-negative septic shock and its effects mediated through cGMP.  相似文献   

13.
N2, O2-di-butyryl guanosine 3′:5′ monophosphate (Bt2 cGMP), a known competitive and selective inhibitor of the effect of cholecystokinin on the pancreatic acinar cells invitro was tested for its effect on the guinea pig gallbladder invitro. Bt2 cGMP inhibited competitively the contractile effect of cholecystokinin octapeptide, and also inhibited the contraction induced by sulfated gastrin-17. Bt2 cGMP failed to inhibit the contraction induced by bombesin, acetylcholine or histamine. The 8-bromo derivative of cGMP and the dibutyryl derivative of cAMP did not affect contraction stimulated by cholecystokinin octapeptide. Since it is specific for gastrincholecystokinin peptides, and not restricted to the pancreas, Bt2 cGMP could be used to recognize the action of these peptides.  相似文献   

14.
Enzyme-linked immunosorbent assays (ELISAs) were developed for determination of N 6-benzyladenosine, N 6-(meta-hydroxybenzyl)adenosine, and structurally related cytokinins. The use of the ELISAs allowed detection over the range of 0.05–70 pmol for N 6-benzyladenine and 0.01–20 pmol for the N 6-(meta-hydroxybenzyl)adenine cytokinins. Polyclonal antibodies used in the assays were specific for N 6-benzyladenine and N 6-(meta-hydroxybenzyl)adenine and their corresponding N 9-substituted derivatives. By the use of internal standardization, dilution assays, authentic [2-3H]cytokinin recovery markers, and immunohistograms, the ELISAs have been shown to be applicable for the estimation of N 6-benzyladenine and N 6-(meta-hydroxybenzyl)adenine-type cytokinins in plant tissues. For the analysis of cytokinins in the tissues of young poplar leaves and Solarium teratoma shoot culture, the extracts were fractionated by high performance liquid chromatography (HPLC) and the fractions analyzed by ELISAs. Immunohistogram ELISA analysis of fractions from different HPLC systems indicated major peaks of immunoreactivity co-chromatographing with the labeled and unlabeled standards of N 6-benzyladenine, N 6-meta-hydroxybenzyl)adenine, and their N 9-glycosides in these tissues.Abbreviations ELISA enzyme-linked immunosorbent assay - FW fresh weight - (mOH)[9R]BAP N 6-(meta-hydroxybenzyl)adenosine - HPLC high performance liquid chromatography - TBS Tris-buffered saline - TEAA triethylammonium acetate - [9R]BAP N 6-benzyladenosine  相似文献   

15.
《Plant science》2001,161(2):249-258
It has been previously suggested that auxin-induced stomatal opening results from at least two transduction pathways, one of which involves cyclic GMP (cGMP) as the mediator within a Ca2+ signalling cascade. This hypothesis was investigated further in epidermal peels of Commelina communis by comparing the effects of potential inhibitors of plant Ca2+-dependent enzymes on the stomatal opening responses to the auxin indolyl-3-butyric acid (IBA) and to the cGMP membrane-permeable derivative 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP). In the 30–50 μM range, the potential plant calmodulin (CaM) antagonist N-(aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7) positively interacted with IBA but not with 8-Br-cGMP to open the stomata. The CaM antagonists W-7 (in the 10–20 μM range) and N-(aminohexyl)-1-naphthalenesulphonamide (40 μM), the potential inhibitors of plant protein kinases 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (20 and 200 μM) and K-252a (0.6 μM), and cyclosporine A and FK506, potential inhibitors of plant homologs of Ca2+–CaM complex (Ca2+/CaM)-dependent protein phosphatase 2B, prevented the IBA and 8-Br-cGMP responses by about 70% and 100%, respectively. Together, these results provide indirect pharmacological evidence that, in addition to the cGMP-dependent pathway, the auxin signal is transduced through at least one cGMP-independent pathway.  相似文献   

16.
The activities of the free base and ribonucleoside forms of cytokinins bearing saturated and unsaturated N6-isoprenoid side chains have been examined in callus cultures derived from Phaseolus vulgaris cv. Great Northern, P. lunatus cv. Kingston, and the interspecific hybrid Great Northern × Kingston. In callus of cv. Great Northern, cytokinins bearing saturated side chains (N6-isopentyladenine, N6-isopentyladenosine, dihydrozeatin, and ribosyldihydrozeatin) were always more active than the corresponding unsaturated analogs (N6-[Δ2-isopentenyl]adenine, N6-[Δ2-isopentenyl]adenosine, zeatin, and ribosylzeatin). In callus of cv. Kinston, the cytokinins bearing unsaturated side chains were either more active or equally as active as the saturated compounds. These differences in cytokinin structure-activity relationships were correlated with differences in the metabolism of 14C-N6-(Δ2-isopentenyl)adenosine. In Great Northern tissues, this cytokinin was rapidly degraded to adenosine; in Kingston tissues, the major metabolite was the corresponding nucleotide. The growth responses of callus of the interspecific hybrid were intermediate between the parental tissues, and the metabolism of 14C-N6-(Δ2-isopentenyl)adenosine by the hybrid callus exhibited characteristics of both parental tissues. The results are consistent with the hypothesis that the weak activity of cytokinins with unsaturated side chains in promoting the growth of Great Northern callus is due to the rapid conversion of these cytokinins to inactive metabolites.  相似文献   

17.
Levels of guanosine 3′,5′-cyclic monophosphate (cGMP) were determined by radioimmunoassay in adherence-purified, oil-induced guinea pig peritoneal exudate macrophages, after extraction of the cells with perchloric acid, purification on Dowex AG1-X8, and acetylation. We found that: (i) Basal cGMP levels were strictly dependent on the concentration of extracellular Ca2+ (0.33 ± 0.03 pmol/mg macrophage protein in Ca2+-free medium and 2.49 ± 0.42 pmol/mg in 1.8 mM Ca2+). (ii) The stimulatory effect of Ca2+ on cGMP levels was prevented by tetracaine. (iii) The cGMP content of macrophages was not elevated by incubation with the ionophore A23187 at extracellular Ca2+ concentrations varying between 0 and 1.8 mM. (iv) Macrophage cGMP levels were increased markedly (up to 40-fold) by incubation of the cells with the nitric oxide (NO)-generating agents, sodium azide, hydroxylamine, sodium nitrite, and sodium nitroprusside. (v) Stimulation of cGMP accumulation by NO-generating agents occurred within 30 sec, was Ca2+-independent, and developed in the presence and absence of the phosphodiesterase inhibitor, isobutyl-methylxanthine. (vi) A minimal elevation in the macrophage cGMP level (less than 2-fold) was induced by ascorbic acid but no significant increases were induced by the following agents, found effective in other cells: serotonin, acetylcholine, carbamylcholine, phorbol myristate acetate, arachidonic acid, Superoxide dismutase, and nitrate reductase.  相似文献   

18.
An LC–MS/MS method was developed and validated to quantify endogenous cyclic guanosine 3′,5′-monophosphate (cGMP) in human plasma. The LC–MS/MS and competitive enzyme immunoassay (EIA) assays were compared. cGMP concentrations of 20 human plasma samples were measured by both methods. For the MS-based assay, plasma samples were subjected to a simple protein precipitation procedure by acetonitrile prior to analysis by electrospray ionization LC–MS/MS. De-protonated analytes generated in negative ionization mode were monitored through multiple reaction monitoring (MRM). A stable isotope-labeled internal standard, 13C10,15N5-cGMP, which was biosynthesized in-house, was used in the LC–MS/MS method. The competitive EIA was validated using a commercially available cGMP fluorescence assay kit. The intra-assay accuracy and precision for MS-based assay for cGMP were 6–10.1% CV and ?3.6% to 7.3% relative error (RE), respectively, while inter-assay precision and accuracy were 5.6–8.1% CV and ?2.1% to 6.3% RE, respectively. The intra-assay accuracy and precision for EIA were 17.9–27.1% CV and ?4.9% to 24.5% RE, respectively, while inter-assay precision and accuracy were 15.1–39.5% CV and ?30.8% to 4.37% RE, respectively. Near the lower limits of detection, there was little correlation between the cGMP concentration values in human plasma generated by these two methods (R2 = 0.197, P = 0.05). Overall, the MS-based assay offered better selectivity, recovery, precision and accuracy over a linear range of 0.5–20 ng/mL. The LC–MS/MS method provides an effective tool for the quantitation of cGMP to support clinical mechanistic studies of curative pharmaceuticals.  相似文献   

19.
  • 1.1. The changes of cAMP and cGMP levels in response to serotonin, dopamine, papaverine and Aspaminol were investigated in acetylcholine- and potassium-treated molluscan smooth muscle in accordance with the time course of contraction-relaxation process in mechanical response to acetylcholine and potassium.
  • 2.2. Acetylcholine (10−5 M) and potassium (229 mM) had no influences on basal cAMP and cGMP levels.
  • 3.3. Serotonin (10−6 M and 10−5 M) dose-dependently elevated cAMP level and serotonin (10−5 M) reduced cGMP level in acetylcholine-treated muscle.
  • 4.4. Serotonin (10−5 M) elevated cAMP level and reduced cGMP level in potassium-treated muscle.
  • 5.5. Dopamine (10−6M and 10−5M), papaverine (10−4M) and Aspaminol (10−4M) had no effect on cAMP and cGMP level in acetylcholine- and potassium-treated muscle.
  • 6.6. Relaxing effect of serotonin may be associated with elevated cAMP level and reduced cGMP level at the pharmacological but not physiological level.
  相似文献   

20.
Nitric oxide relaxes human myometrium by a cGMP-independent mechanism   总被引:1,自引:0,他引:1  
The role of intracellular guanosine 3',5'-cyclicmonophosphate concentration([cGMP]i) in nitricoxide (NO)-mediated relaxations in the uterus has become controversial.We found the NO donor S-nitroso-L-cysteine(CysNO) to potently (IC50 = 30 nM)inhibit spontaneous contractions in the nonpregnant human myometrium. CysNO treatment increased[cGMP]i significantly(P < 0.001), and this increase wasblocked by the guanylyl cyclase inhibitors methylene blue (10 µM) orLY-83583 (1 µM); however, pretreatment with these guanylyl cyclaseinhibitors failed to block CysNO-mediated relaxations. IntracellularcAMP concentrations were not altered by treatment of tissues with 10 µM CysNO. Incubation with the cGMP analogs 8-bromo-cGMP or-phenyl-1,N2-etheno-cGMPdid not significantly affect spontaneous contractility. Pretreatment oftissues with charybdotoxin [a calcium-dependent potassium channel(BK) blocker] completely reversed CysNO-induced relaxations. Weconclude that NO is a potent inhibitor of spontaneous contractileactivity in the nonpregnant human uterus and that, although guanylylcyclase and BK activities are increased by NO, increases in[cGMP]i are notrequired for NO-induced relaxations in this tissue.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号