首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-boranophosphates suppress RT-mediated resistance when the catalytic rate of incorporation (kpol) of the analogue 5'-triphosphate is responsable for drug resistance, such as in the case of K65R mutant and ddNTPs, and Q151M toward AZTTP and ddNTPs. This suppression is also observed with BH3-d4T and BH3-3TC toward their clinically relevant mutants Q151M and M184V. Moreover, the presence of the borano (BH3-) group renders the incorporation of the analogue independent from amino-acid substitutions in RT. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analogue.  相似文献   

2.
A natural mutation at codon 151 (Gln --> Met; Q151M) of HIV-1 RT has been shown to confer resistance to the virus against dideoxy nucleoside analogues [Shirasaka, T., et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 2398], suggesting that Gln 151 may be involved in conferring sensitivity to nucleoside analogues. To understand its functional implication, we generated two mutant derivatives of this residue (Q151M and Q151N) and examined their sensitivities to ddNTPs and their ability to discriminate against rNTPs versus dNTP substrates on natural U5-PBS HIV-1 RNA template. We found that Q151M was highly discriminatory against all four ddNTPs but was able to incorporate rNTPs as efficiently as the wild type enzyme. In contrast, the Q151N mutant was only moderately resistant to ddNTPs but exhibited a higher level of discrimination against rNTPs. The fidelity of misinsertion was found to be highest for the Q151N mutant followed by Q151M and the wild type enzyme. These results point toward the importance of the amino acid side chain at position 151 in influencing the ability of the enzyme in recognition and discrimination against the sugar moieties of nucleotide substrates.  相似文献   

3.
4.
Tetrahydrobiopterin (BH4), the obligatory cofactor of the aromatic amino acid hydroxylases, decreased the in situ32P-phosphorylation of tyrosine hydroxylase (TH) in rat striatal synaptosomes. Incubation of pre-32P-labeled synaptosomes with BH4 in the presence of a permeant analogue of cAMP decreased the cAMP-stimulated level of32P label incorporation into TH by about 50%, as determined by immunoprecipitation and autoradiography of SDS-polyacrylamide gels. The extent of inhibition mirrored changes in intrasynaptosomal BH4 levels and varied both as a function of BH4 concentration and length of incubation. A similar decrease in the amount of TH32P-labeling was observed with the precursor of BH4, sepiapterin. This effect, in turn, was reversed by the inhibitor of sepiapterin reductase, N-acetyl-serotonin. Finally, exposure of pre-32P-labeled synaptosomes to the inhibitor of protein phosphatase 2A, okadaic acid, blocked the response to BH4. Collectively, the data suggest that BH4 stimulates the dephosphorylation of TH in situ and thus may play a dual role both as a cofactor for catalysis and a regulator of hydroxylase activity.Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

5.
Abstract

A stereoregular all-(S p)-boranophosphate oligodeoxyribonucleotide (BH3 ?-ODN) 15-mer was synthesized using an enzymatic approach. The BH3 ?-ODN formed a hybrid with the complementary RNA 15-mer and induced RNase H hydrolysis of the RNA strand at ODN concentrations as low as 10 nM at 37°C, but with a lower efficiency than that of its natural phosphodiester analogue.  相似文献   

6.
7.
8.
9.
Wim F.J. Vermaas 《BBA》1982,680(2):202-209
We investigated the effect of HCO?3 addition to CO2-depleted thylakoids by means of fluorescence techniques. (1) In the presence of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), the net reduction of the primary quinone-type electron acceptor (Q) of Photosystem (PS) II is about 2-times faster in the absence of HCO?3 than in its presence, whether normal, heat-treated or NH2OH-treated samples are used. This effect of HCO?3 is, therefore, not on the O2-evolving apparatus. It is, however, interpreted to be due to an influence of HCO?3 on the kinetics of the reduction of Q, perhaps combined with an effect on the back reaction of Q? with P-680+, the oxidized form of the PS II reaction center chlorophyll a. (2) Fluorescence experiments in the absence of diuron indicate that the absence of HCO?3 results in a complete block at the quinone level; the area over the fluorescence induction curve in the absence of HCO?3 was found to be 2.2-times higher in the absence than in the presence of diuron, pointing to a complete block of BH2 oxidation in the absence of HCO?3. (3) No change in the midpoint potential of Q is observed when HCO?3 is added to CO2-depleted membranes. HCO?3 not only has a large (on/off) effect on the reoxidation of BH2, but also a smaller effect between P-680 and Q. We propose that HCO?3 binding to its specific site in the thylakoid membrane results in a conformational change, allowing normal electron transport between the two photosystems.  相似文献   

10.
A.D. Sherman  E.M. Gál 《Life sciences》1978,23(16):1675-1679
Using 2-amino-6-(5'-2'-deoxyphosphoribosyl)-amino-5- or -6-formamido-6-hydroxypyrimidine (dFPyd-P3), a specific inhibitor of tetrahydrobiopterin (BH4) synthesis, cerebral pools of BH4 were reduced to half of that of controls; while, simultaneously, the biosynthesis de novo of L-erythrodihydroniopterin (BH2) from GTP was inhibited by about 98%. Nevertheless, there was no effect on the cerebral levels of serotonin, dopamine, norepinephrine or on the biosynthesis of prostaglandin E2 or F1. The data are presented in evidence that the absolute level of the cofactor (BH4) is not regulatory of amine or protaglandin biosynthesis in vivo. Amine and prostaglandin biosynthesis proceeded even at cofactor concentrations of 9×107 M nsuggesting that their biosynthesis is dependent on the rate of H+ + e shuttle between BH2 and BH4.  相似文献   

11.
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH4) is oxidized to dihydrobiopterin, which competes with BH4 for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH4 to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O2•− production to understand the roles of BH4 availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O2•−, ONOO, O2, CO2, and BH4 were also modeled. The model predicted that a lower [BH4]/[TBP] ratio decreased NO production but increased O2•− production from eNOS. The NO and O2•− production rates were independent above 1.5 μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH4]/[TBP] ratio, and a supplementation of BH4 might be effective only when the [BH4]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.  相似文献   

12.
13.
We examined whether the improvement of impaired NO-dependent vasorelaxation by exercise training could be mediated through a BH4-dependent mechanism. Male spontaneously hypertensive rats (SHR, n?=?20) and Wistar-Kyoto rats (WKY, n?=?20) were trained (Tr) for 9 weeks on a treadmill and compared to age-matched sedentary animals (Sed). Endothelium-dependent vasorelaxation (EDV) was assessed with acetylcholine by measuring isometric tension in rings of femoral artery precontracted with 10?5?M phenylephrine. EDV was impaired in SHR-Sed as compared to WKY-Sed (p?=?0.02). Training alone improved EDV in both WKY (p?=?0.01) and SHR (p?=?0.0001). Moreover, EDV was not different in trained SHR than in trained WKY (p?=?0.934). Pretreatment of rings with L-NAME (50 μM) cancelled the difference in ACh-induced relaxation between all groups, suggesting that NO pathway is involved in these differences. The presence of 10?5?M BH4 in the organ bath significantly improved EDV for sedentary SHR (p?=?0.030) but not WKY group (p?=?0.815). Exercise training turned the beneficial effect of BH4 on SHR to impairment of ACh-induced vasorelaxation in both SHR-Tr (p?=?0.01) and WKY-Tr groups (p?=?0.04). These results suggest that beneficial effect of exercise training on endothelial function is due partly to a BH4-dependent mechanism in established hypertension.  相似文献   

14.
15.
Samples of quinonoid-l -erythrodihydrobiopterin (q-BH2) and quinonoid-6-methyl-dihydro-pterin (q-6-MPH2) were prepared by oxidation of l -erythro-5,6,7,8-tetrahydrobiopterin (BH4) and 5,6,7,8-tetrahydro-6-methylpterin (6-MPH4) and separated from D-erythro-7,8-dihydrobiopterin (7,8-BH2) and 6-methyl-7,8-dihydropterin (7,8-6-MPH2) as well as from the tetrahydropterins on phosphocellulose column by high-pressure liquid chromatography. The quinonoid dihydropterins were identified and quantitated by scan of their ultraviolet absorption and fluorescence emission spectra through their rearrangement to their 7,8-tautomer and also by gas chromatography of their rapidly synthesized trimethylsilyl derivative. Identification was also achieved by the enzymatic reduction of [3H]q-BH2to [3H]BH4 by dihydrofolate reductase (DHFR). Direct proof for the enzymatic synthesis of the q-BH2 from GTP or from 2-amino-6-(5′-triphosphoribosyl)-amino-5- or -6-formamido-6-hydroxypyrimi-dine (FPyd-P3) was obtained by isolation of the compound which was identical in all respects to the q-BH2 obtained by chemical synthesis from BH4. The reduction of enzymatically synthesized q-BH2 by dihydropteridine reductase (DHPR) to BH4 was not inhibited by methotrexate (MTX). When the enzymatically synthesized q-BH2 was converted to 7,8-BH2, it was reduced only by DHFR. This reduction, however, was inhibited by MTX. On the biosynthetic pathway from GTP to dihydrobiopterin, the enzyme responsible for the appearance of the quinonoid structure is the d -erythro-dihydroneopterin triphosphate synthetase, the product of which (quinonoid d -erythro-dihydroneopterin triphosphate) is converted to quinonoid dihydrobiopterin by l -erythro-dihydrobiopterin synthetase. Experiments in vivo established that DHFR does not participate in the reduction of dihydrobiopterin to tetra-hydrobiopterin when the former is synthesized from GTP de novo. MTX at 5 × 10?6M exerted no inhibition on the reduction of the biosynthetic dihydrobiopterin to tetrahydrobiopterin in vivo, yet completely inhibited the reduction of intraventricularly injected tritiated dihydrofolate ([3H]FH2) to tritiated tetrahydrofolate ([3H]FH4).  相似文献   

16.
The oral toxicity of the C‐type allatostatin, Manduca sexta allatostatin (Manse‐AS) and the analogue δR3δR5Manse‐AS, where R residues were replaced by their D‐isomers, were tested against the peach‐potato aphid Myzus persicae by incorporation into an artificial diet. Both peptides had significant dose‐dependent effects on mortality, growth, and fecundity compared with control insects. The analogue, δR3δR5Manse‐AS, had an estimated LC50 of 0.31 µg/µl diet and was more potent than Manse‐AS (estimated LC50 of 0.58 µg/µl diet). At a dose of 0.35 µg δR3δR5Manse‐AS/µl diet, 76% of the aphids were dead after 6 days and all were dead after 10 days. In comparison, three times the dose of Manse‐AS was required to achieve 74% mortality after 8 days and 98% mortality after 16 days. The degradation of both peptides by extracts prepared from the gut of M. persicae was investigated. The estimated half‐life of Manse‐AS, when incubated with the gut extract from M. persicae, was 31 min. Degradation was due to a cathepsin L‐like cysteine protease, carboxypeptidase‐like activity, endoprotease activity with glutamine specificity, pyroglutamate aminopeptidase activity, and possibly trypsin‐like proteases. The half‐life of the δR3δR5 Manse‐AS analogue was enhanced (73 min) with the D‐isomers of R appearing to prevent cleavage around the R residues by cathepsin L‐like cysteine proteases or from trypsin‐like proteases. The greater stability of the analogue may explain its increased potency in M. persicae. This work demonstrates the potential use of Manse‐AS and analogues, with greater resistance to enzymatic attack, in aphid control strategies. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
18.
《Autophagy》2013,9(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr?/? mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr?/? mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr?/? mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr?/? mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.  相似文献   

19.
When 1, 10-phenanthroline at 10?4 mole/kg was administered intraperitoneally to C3H mice, a significant decrease of (32P) Na2HPO4 incorporation into splenic DNA and RNA was noted within 15 min. The same dose or higher was required to significantly inhibit the incorporation of (5-3H) uridine and (methyl-3H) thymidine into splenic nucleic acid. 1, 10-phenanthroline also decrease the incorporation of the 32P into DNA and RNA in 6C3HED ascites tumor. 1, 7-phenanthroline, a non-chelating analogue at 10?4 mole/kg, less effectively altered the rate of the 32P incorporation into splenic nucleic acid within 15 min, but significantly inhibited the incorporation within 1 hr.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号