首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Using DNA and RNA heptanucleotides containing an unnatural L-nucleotides as well as the complementary strands, effects of the introduction of an L-nucleotide on the structure of DNA/DNA, RNA/RNA, and DNA/RNA duplexes were investigated by circular dichroism experiments and RNase H-mediated RNA strand cleavage reaction. The results suggested that the substitution of the central D-nucleotide with an L-nucleotide in the duplexes causes the significant structural alterations as the duplex structures change to conformations with more B-form similarities.  相似文献   

2.
We have used the single-strand specific nuclease from Neurospora crassa and chromatography on methylated albumin-kieselguhr to purify and characterize repeated and self-complementary sequences from Escherichia coli DNA. Approximately 0.5% of the genome renatures spontaneously at zero time and another 2% renatures somewhat more rapidly than the total DNA. The early renaturing DNA has a base composition and a Tm similar to the total DNA and contains on the average 100 base pairs; the self-complementary DNA also has a base composition like E. coli but contains a mean of 170 base pairs. No evidence was obtained for the presence of a highly redundant sequence.  相似文献   

3.
Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1–2 helical turns (clustered lesion). Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site) composed of the clustered lesion with 5-formyluracil (5-foU) by the base excision repair (BER) proteins. We found, that if the AP site is shifted relative to the 5-foU of the opposite strand, it could be repaired primarily via the short-patch BER pathway. In this case, the cleavage efficiency of the AP site-containing DNA strand catalyzed by human apurinic/apyrimidinic endonuclease 1 (hAPE1) decreased under AP site excursion to the 3''-side relative to the lesion in the other DNA strand. DNA synthesis catalyzed by DNA polymerase lambda was more accurate in comparison to the one catalyzed by DNA polymerase beta. If the AP site was located exactly opposite 5-foU it was expected to switch the repair to the long-patch BER pathway. In this situation, human processivity factor hPCNA stimulates the process.  相似文献   

4.
Purpose: The main goal of the present study was to determine DNA damage in pesticide-exposed greenhouse workers and pesticides non-exposed controls.

Materials and methods: The DNA damage was measured by alkaline comet assay method (pH?>?13) in 41 greenhouse workers and 45 non-exposed individuals as the control. Pesticide exposure was assessed by duration of working in the greenhouse and pesticide application in the greenhouse time. DNA damage was estimated by arbitrary unit and damage frequency.

Results: Arbitrary unit and damage frequency were consistently significantly higher in greenhouse workers than those of the controls (p?=?0.001). In terms of gender in greenhouse, DNA damage of female workers was significantly higher than those in male workers (p?<?0.05). We found significant correlation between DNA damage and working hours spent. Multiple linear regression analysis showed that working hours in the greenhouse as an indication of pesticide exposure were significantly associated with the DNA damage, which can be attributed to the genotoxic potential of the pesticide mixture.

Conclusions: The comet assay is sensitive to detect the damage exposed to chronic effect of pesticides in greenhouse workers. Significant DNA damage was obtained for the exposed group, which was associated with the pesticide exposure.  相似文献   


5.
Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells.1 Pedersen RT, Kruse T, Nilsson J, Oestergaard VH, Lisby M. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. J Cell Biol 2015; 210:565-82; PMID:26283799; http://dx.doi.org/10.1083/jcb.201502107[Crossref], [PubMed], [Web of Science ®] [Google Scholar] Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.  相似文献   

6.
The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship.  相似文献   

7.
We have isolated a mutant of Bacillussubtilis deficient in DNA polymerase I, denominated polA42, which shows a reduced ability to repair the damage to DNA by UV radiation, MMS and mitomycin C;the ability to perform recombination is not appreciably impaired.DEAE cellulose chromatography allows the separation of polymerases I and II from the parental strain;a simple procedure is also described which allows to separate rapidly the polymerases II and III of the mutant strain. The three separated polymerases have similar catalytic properties but they can be distinguished for their sensitivity to inhibitors: PCMB inhibits polymerases II and III but not polymerase I; HPUra inhibits only polymerase III. All three enzymes are unaffected by nalidixate. The DNA synthesis occurring in cells of the polA42 strain permeabilized with toluene is inhibited by nalidixate, whereas the synthesis occurring in polA+ toluenized cells is unaffected by the drug. The polA gene has been mapped by transduction and localized between the phe12 and argA3 genes.  相似文献   

8.
9.
Cytosine residues of poly(C) and heat-denatured calf thymus DNA were transformed into 5,6-dihydrouracil-6-sulfonate (U(SO3)) residues by treatment with bisulfite. The poly(U(SO3)2, C3) and poly(U(SO3)9, C1) prepared did not form inter-base binding with either poly(A) or poly(I) as judged by the absence of hypochromicity in ultraviolet absorbance. U(SO3) residues in the DNA inactivated it to serve as template for E.coli DNA polymerase I, while the template activity was restored by conversion of the U(SO3) residues into U.  相似文献   

10.
The molecular size of mu and pi symbionts of Parameciumaurelia has been calculated from renaturation kinetic data. Observed values were 0.78 × 109 daltons for mu particle DNA and 0.81 × 109 daltons for pi particle DNA. Estimates of analytical complexity were 4.45 × 109 and 5.05 × 109 daltons respectively. Based on these data, mu and pi symbionts appear to possess multiple genomes and contain a minimum of 5 or 6 copies of each DNA sequence.  相似文献   

11.
Abstract

(1′R, 3′S and R, 5′S)-4′-Oxo-2′-oxabicyclo[3.1.0]hexan-3′-yl pyrimidines and purines were synthesized from ribonucleosides in 2-5 steps. The configurations of the base moieties in the cyclopropano keto-nucleosides were determined by NOE difference spectroscopy.  相似文献   

12.
Uptake signal sequences are DNA motifs that promote DNA uptake by competent bacteria in the family Pasteurellaceae and the genus Neisseria. The genomes of these bacteria contain many copies of their canonical uptake sequence (often >100-fold overrepresentation), so the bias of the uptake machinery causes cells to prefer DNA derived from close relatives over DNA from other sources. However, the molecular and evolutionary forces responsible for the abundance of uptake sequences in these genomes are not well understood, and their presence is not easily explained by any of the current models of the evolution of competence. Here we describe use of a computer simulation model to thoroughly evaluate the simplest explanation for uptake sequences, that they accumulate in genomes by a form of molecular drive generated by biased DNA uptake and evolutionarily neutral (i.e., unselected) recombination. In parallel we used an unbiased search algorithm to characterize genomic uptake sequences and DNA uptake assays to refine the Haemophilus influenzae uptake specificity. These analyses showed that biased uptake and neutral recombination are sufficient to drive uptake sequences to high densities, with the spacings, stabilities, and strong consensuses typical of uptake sequences in real genomes. This result greatly simplifies testing of hypotheses about the benefits of DNA uptake, because it explains how genomes could have passively accumulated sequences matching the bias of their uptake machineries.MANY bacteria are able to take up DNA fragments from their environment, a genetically specified trait called natural competence (Chen and Dubnau 2004; Johnsborg et al. 2007; Maughan et al. 2008). Many other species have homologs of competence genes, suggesting that although they are not competent under laboratory conditions, they may be competent under natural conditions (Claverys and Martin 2003; Kovacs et al. 2009). Such a widespread trait must be beneficial but the evolutionary function of DNA uptake remains controversial. Cells can use the nucleotides released by degradation of both incoming DNA and any strands displaced by its recombination, thus reducing demands on their nucleotide salvage and biosynthesis pathways (Redfield 1993; Palchevskiy and Finkel 2009). Cells may also benefit if recombination of the incoming DNA provides templates for DNA repair or introduces beneficial mutations, but may suffer if recombination introduces damage or harmful mutations (Redfield 1988; Michod et al. 2008).Although most bacteria that have been tested show no obvious preferences for specific DNA sources or sequences, bacteria in the family Pasteurellaceae and the genus Neisseria strongly prefer DNA fragments from close relatives. Two factors are responsible: First, the DNA uptake machineries of these bacteria are strongly biased toward certain short DNA sequence motifs. Second, the genomes of these bacteria contain hundreds of occurrences of the preferred sequences. The Pasteurellacean motif is called the uptake signal sequence (USS); its Neisseria counterpart is called the DNA uptake sequence (DUS). All Neisseria genomes contain the same consensus DUS [core GCCGTCTGAA (Treangen et al. 2008)], but divergence in the Pasteurellaceae has produced two subclades, one of species sharing the canonical Haemophilus influenzae 9-bp USS (Hin-USS core AAGTGCGGT) and the other of species with a variant USS that differs at three core positions (Apl-USS core: ACAAGCGGT) and has a longer flanking consensus (Redfield et al. 2006). Uptake sequence biases are strong but not absolute; for example, replacing the Hin-USS with the Apl-USS reduces H. influenzae DNA uptake only 10-fold (Redfield et al. 2006) and DNA from Escherichia coli is taken up in the absence of competing H. influenzae DNA (Goodgal and Mitchell 1984).Most studies of the distribution and consensus of uptake sequences in genomes have examined only those occurrences that perfectly match the above core DUS and USS sequences. Here we call these perfect matches “core-consensus” (cc) uptake sequences. These cc-uptake sequences occupy ∼1% of their genomes; they are equally frequent in the plus and minus orientations of the genome sequence but are underrepresented in coding sequences, with the noncoding 14% and 20% of their respective genomes containing 35% of cc-USSs and 65% of cc-DUSs (Smith et al. 1995). Although many of these intergenic cc-DUSs and cc-USSs occur in inverted-repeat pairs that function as terminators (Kingsford et al. 2007), most uptake sequences are too far apart or in genes or other locations where termination does not occur. Within coding regions uptake sequences occur more often in weakly conserved genes, in weakly conserved parts of genes, and in reading frames that encode common tripeptides (Findlay and Redfield 2009), all of which are consistent with selection acting mainly to eliminate mutations that improve uptake from genome regions constrained by coding or other functions.Analyses that focus on cc-uptake sequences effectively treat uptake sequences as replicative elements (Smith et al. 1995; Redfield et al. 2006; Ambur et al. 2007; Treangen et al. 2008). However, USS and DUS are known to originate in situ by normal mutational processes, mainly point mutations, and to spread between genomes mainly by homologous recombination (Redfield et al. 2006; Treangen et al. 2008). As they are not replicating elements, why are they up to 1000-fold more common in their genomes than expected for unselected sequences (e.g., H. influenzae, 1471 cc-USS vs. 8 expected by chance; N. gonorrheae, 1892 cc-DUS vs. 2 expected by chance)?The explanation for this abundance must lie with the specificity of the DNA uptake system, because the strong correspondence between the uptake bias and the uptake sequences in the genome is far too improbable to be a coincidence. However, uptake specificity is not easily accommodated by either of the hypothesized functions of DNA uptake. If bacteria take up DNA to get benefits from homologous genetic recombination, the combination of uptake bias and uptake sequences might serve as a mate-choice adaptation that maximizes these benefits by excluding foreign DNAs (Treangen et al. 2008). Although this explanation is appealing, it requires simultaneous evolution of bias in the uptake machinery and of genomic sequences matching this bias. Another problem is that the genomic sequences can be “selected” only after the cell carrying them is dead. On the other hand, if bacteria instead take up DNA as a source of nutrients, all DNAs should be equally useful, so uptake bias and uptake sequences would likely reduce rather than increase this benefit. Although the sequence bias could be explained as a consequence of mechanistic constraints on DNA uptake, this would not account for the high density of the preferred sequences in the genome.However, both hypotheses may be simplified by a process called molecular drive, under which uptake sequences would gradually accumulate over evolutionary time as a direct consequence of biased uptake and recombination (Danner et al. 1980; Bakkali et al. 2004; Bakkali 2007), without any need for natural selection. This drive is proposed to work as follows: First, random mutation continuously creates variation in DNA sequences that affects their probability of uptake, and random cell death allows DNA fragments containing preferred variants to be taken up by other cells. Second, repeated recombination of such preferred DNA sequences with their chromosomal homologs gradually increases their abundance in the genomes of competent cells'' descendants. Thus mutations that create matches to the bias of the uptake machinery are horizontally transmitted to other members of the same species more often than other mutations. Because some recombination may be inevitable even if DNA''s main benefit is nutritional, molecular drive could account for uptake sequence accumulation under both hypotheses, leaving only the biased uptake process to be explained by natural selection for either genetic variation or nutrients.Although drive is plausible, its ability to account for the observed properties of genomic uptake sequences has never been evaluated. To do this, we developed a realistic computer simulation model that includes only the processes thought to generate molecular drive. Below we first use this model to identify the conditions that determine whether uptake sequences will accumulate and then compare the properties of these simulated uptake sequences to those of the uptake sequences in the N. meningitidis and H. influenzae genomes. In parallel we use unbiased motif searches to better characterize genomic uptake sequences and DNA uptake assays to refine the H. influenzae uptake specificity.  相似文献   

13.
During lagging-strand DNA replication in eukaryotic cells primers are removed from Okazaki fragments by the flap endonuclease and DNA ligase I joins nascent fragments. Both enzymes are brought to the replication fork by the sliding clamp proliferating cell nuclear antigen (PCNA). To understand the relationship among these three components, we have carried out a synthetic lethal screen with cdc9-p, a DNA ligase mutation with two substitutions (F43A/F44A) in its PCNA interaction domain. We recovered the flap endonuclease mutation rad27-K325* with a stop codon at residue 325. We created two additional rad27 alleles, rad27-A358* with a stop codon at residue 358 and rad27-pX8 with substitutions of all eight residues of the PCNA interaction domain. rad27-pX8 is temperature lethal and rad27-A358* grows slowly in combination with cdc9-p. Tests of mutation avoidance, DNA repair, and compatibility with DNA repair mutations showed that rad27-K325* confers severe phenotypes similar to rad27Δ, rad27-A358* confers mild phenotypes, and rad27-pX8 confers phenotypes intermediate between the other two alleles. High-copy expression of POL30 (PCNA) suppresses the canavanine mutation rate of all the rad27 alleles, including rad27Δ. These studies show the importance of the C terminus of the flap endonuclease in DNA replication and repair and, by virtue of the initial screen, show that this portion of the enzyme helps coordinate the entry of DNA ligase during Okazaki fragment maturation.CELLULAR maintenance of genomic integrity is essential for the continued viability of all organisms. The fidelity of DNA replication has to be maintained and DNA insults have to be repaired to ensure that deleterious mutations are not passed on to progeny or cause cancerous growth. A number of cellular proteins have multiple roles in DNA replication, mutation avoidance, and repair. In Saccharomyces cerevisiae, the flap endonuclease, proliferating cell nuclear antigen (PCNA), and DNA ligase I encoded by RAD27, POL30, and CDC9, respectively, are all required for proper replication and also function to avoid mutation and to facilitate repair.The flap endonuclease, FEN-1 in humans, is a highly conserved structure-specific nuclease that has both endonuclease and 5′–3′ exonuclease activity. During lagging-strand replication these activities function to remove primers from Okazaki fragments, either by endonucleolytic cleavage of a flap made by strand displacement (Liu et al. 2004) or by sequential exonucleolytic removal of single nucleotides at the 5′ end of the primer (Murante et al. 1994).While deletion of RAD27 is not lethal to yeast cells, the rad27Δ mutant exhibits temperature-sensitive growth, is a mutator, and undergoes genomic instability (Johnson et al. 1995; Reagan et al. 1995; Tishkoff et al. 1997b; Chen and Kolodner 1999). In addition, its sensitivity to low doses of the methylating agent methylmethane sulfonate (MMS) implicates the participation of the enzyme in base excision repair (BER) (Reagan et al. 1995; Wu and Wang 1999). rad27Δ mutants have been reported to be either mildly sensitive to UV light or not sensitive to UV light (Reagan et al. 1995; Sommers et al. 1995). In the strain background that the mutant is mildly sensitive, its combination with rad2Δ yields a double mutant more sensitive than each single mutant, implying that the enzyme does not participate in RAD2-mediated nucleotide excision repair (NER) (Reagan et al. 1995). The flap endonuclease has also been implicated in double-strand break (DSB) repair by virtue of the incompatibility of rad27Δ with mutations of the DSB repair pathways (Tishkoff et al. 1997b; Symington 1998). In addition, either the yeast enzyme or its human ortholog has been shown to participate in reactions of homologous recombination, nonhomologous end joining, and telomere maintenance (Parenteau and Wellinger 1999, 2002; Wu et al. 1999; Wang et al. 2004; Kikuchi et al. 2005). Curiously, the rad27Δ mutant is not sensitive to gamma radiation but is sensitive to high doses of MMS that are thought to act as a radiomimetic agent (Reagan et al. 1995; Sommers et al. 1995).PCNA is the replicative clamp that acts as a scaffold to facilitate the loading of DNA replication and repair proteins, including DNA ligase I and the flap endonuclease to DNA (Warbrick 2000, 2006; Maga and Hubscher 2003). PCNA (POL30) is essential for cell viability, which is indicative of its central role in DNA metabolism. Biochemical characterization of its effect on the flap endonuclease shows that it stimulates its activity ∼50-fold, evidencing the productive nature of the interaction (Gomes and Burgers 2000; Tom et al. 2000; Frank et al. 2001; Stucki et al. 2001). The ability of DNA ligase to efficiently catalyze the formation of phosphodiester bonds in the DNA backbone may also be facilitated by its binding to PCNA. Tom et al. (2001) showed that, in vitro, PCNA enhances the ligation reaction 5-fold and that the stable association of DNA ligase with nicked duplex DNA requires PCNA.Both DNA ligase and the flap endonuclease bind to PCNA via their respective PCNA interactive peptide domains (PIP box). The PIP box is a conserved sequence motif of the amino acids QXXLXXFF. The PIP box fits into the interdomain connector loop (IDCL) of PCNA to provide a protein–protein interaction surface (Gomes and Burgers 2000; Chapados et al. 2004; Sakurai et al. 2005; Pascal et al. 2006). Mutations in the PIP box or the IDCL that impair the interaction of DNA ligase and the flap endonuclease to PCNA lead to genomic instability (Amin and Holm 1996; Eissenberg et al. 1997; Gary et al. 1999; Refsland and Livingston 2005; Subramanian et al. 2005). We have reported that the double mutants made by combinations of cdc9-p, rad27-p, and pol30-90—mutations with alterations of the PIP box or the IDCL in the respective proteins—have synergistic phenotypes with respect to MMS sensitivity and to trinucleotide repeat instability (Refsland and Livingston 2005). These results suggest that the two enzymes function in a concerted manner that is facilitated by PCNA.The precise nature of how PCNA coordinates the entry of the flap endonuclease and DNA ligase into the replication fork is not well understood. Biochemical and structural studies have begun to elucidate a possible ordering of these PCNA-mediated interactions. The possibility of such an ordering is underscored by the observation that DNA ligase adopts a toroidal conformation by completely encircling duplex DNA while interacting with PCNA (Pascal et al. 2004). Moreover, both PCNA and DNA ligase may be loaded onto the DNA in a mechanism utilizing the replication clamp loader replication factor C (RFC) (Levin et al. 2004; Vijayakumar et al. 2009), again suggesting a complete encirclement of the DNA by DNA ligase as well as by PCNA. PCNA and DNA ligase are similar in size and their interaction is likely to extend along the face of PCNA in a manner that would prevent other proteins such as the flap endonuclease from binding to the IDCL (Pascal et al. 2004, 2006). A biochemical study with purified yeast proteins showed that the two enzymes cannot bind simultaneously to PCNA (Subramanian et al. 2005). These studies suggest that a coordinated sequential interaction among PCNA, DNA ligase, and the flap endonuclease is important for replication and repair.Alternatively, both the flap endonuclease and DNA ligase may bind to the same molecule of PCNA. Since PCNA is a homotrimer, DNA ligase can potentially bind to one monomer while the flap endonuclease binds to another, using its extended C-terminal tail in a conformation allowing it to be tethered to PCNA concurrently with DNA ligase (Gomes and Burgers 2000; Sakurai et al. 2005). DNA ligase could also bind to PCNA in an extended conformation while the flap endonuclease cleaves the DNA. Sulfolobus solfataricus DNA ligase has been shown to have an open, extended conformation while binding to PCNA (Pascal et al. 2006). Presumably, once the flap endonuclease has removed the 5′ flap, DNA ligase acquires a closed, ring-shaped conformation to catalyze the joining of Okazaki fragments (Pascal et al. 2006).Exactly how the interaction of these enzymes with PCNA is coordinated in vivo, whether singly or concurrently, is not well understood. To further elucidate how the interaction of DNA ligase with PCNA is ordered, we performed a genetic screen to identify mutations that are synthetically lethal with cdc9-p (F44A/F35A), an allele of DNA ligase that has impaired binding to PCNA (Refsland and Livingston 2005; Subramanian et al. 2005). We postulated that genes recovered from this screen would function in DNA repair, replication, and recombination or would be involved in ordering the DNA ligase–PCNA interaction. From the screen we recovered a truncated allele of RAD27, rad27-K325*. This allele encodes a protein that lacks the PIP box and the entire C-terminal domain of the enzyme but retains the N terminus containing the nuclease activities. We have characterized this allele and compared it to two other rad27 alleles in which we have created different alterations of the C-terminal end of the flap endonuclease.  相似文献   

14.
Abstract

Two pyrimidine α-LNA nucleoside monomers have been synthesised and incorporated into α-configured oligonucleotides. A fully modified mixed α-LNA sequence displays unprecedented parallel stranded hybridisation with complementary RNA and a remarkable selectivity for RNA over DNA. Modelling shows α-LNA : RNA to form an extended duplex with a very broad major groove.  相似文献   

15.
16.
17.
A novel ligand BOPIP (BOPIP?=?{2-(4-(benzyloxy)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}) and its mononuclear Ru(II) polypyridyl complexes [Ru(phen)2 BOPIP]2+(1) (phen?=?1,10-Phenanthrolene), [Ru(bpy)2 BOPIP]2+(2) (bpy?=?2,2′ bipyridyl), [Ru(dmb)2 BOPIP]2+(3) (dmb?=?4, 4′ -dimethyl 2, 2′ -bipyridine), [Ru(Hdpa)2 BOPIP]2+(4) (Hdpa?=?2,2′dipyridylamine) have been synthesized successfully and characterized by elemental analysis, UV-vis, IR, 1H, 13 Gill, M. R.; Garcia-Lara, J.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, J. A. A Ruthenium(II) polypyridyl Complex for Direct Imaging of DNA Structure in Living Cells. Nat. Chem. 2009, 1, 662667.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]C-NMR, and ESI-MS Spectroscopy. The interaction of these complexes with CT-DNA was studied using absorption, emission techniques, viscosity measurements and molecular docking studies. The docking study also supports the binding ability of complexes obtained through the absorption and emission techniques. These studies reveal that the Four Ru(II) polypyridyl complexes bind to DNA predominantly by intercalation. The Antimicrobial activity and cytotoxicity of these complexes are also reported.  相似文献   

18.
ABSTRACT

Affinity modification of EcoRII DNA methyltransferase (M·EcoRII) by DNA duplexes containing oxidized 2′-O-β-D-ribofuranosylcytidine (Crib*) or 1-(β-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M·EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M·EcoRII region. Our results support the theoretically predicted DNA binding region of M·EcoRII.  相似文献   

19.
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates immune and inflammatory responses, and its overproduction is a hallmark of inflammatory diseases. Inhibition of IL-6 signaling with the anti-IL-6 receptor antibody tocilizumab has provided some clinical benefit to patients; however, direct cytokine inhibition may be a more effective option. We used the systematic evolution of ligands by exponential enrichment (SELEX) process to discover slow off-rate modified aptamers (SOMAmers) with hydrophobic base modifications that inhibit IL-6 signaling in vitro. Two classes of IL-6 SOMAmers were isolated from modified DNA libraries containing 40 random positions and either 5-(N-benzylcarboxamide)-2′-deoxyuridine (Bn-dU) or 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxyuridine (Nap-dU) replacing dT. These modifications facilitate the high affinity binding interaction with IL-6 and provide resistance against degradation by serum endonucleases. Post-SELEX optimization of one Bn-dU and one Nap-dU SOMAmer led to improvements in IL-6 binding (10-fold) and inhibition activity (greater than 20-fold), resulting in lead SOMAmers with sub-nanomolar affinity (Kd = 0.2 nm) and potency (IC50 = 0.2 nm). Although similar in inhibition properties, the two SOMAmers have unique sequences and different ortholog specificities. Furthermore, these SOMAmers were stable in human serum in vitro for more than 48 h. Both SOMAmers prevented IL-6 signaling by blocking the interaction of IL-6 with its receptor and inhibited the proliferation of tumor cells in vitro as effectively as tocilizumab. This new class of IL-6 inhibitor may be an effective therapeutic alternative for patients suffering from inflammatory diseases.  相似文献   

20.

Background

The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

Methodology

In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

Conclusions

Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号