首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
CSF purines were grossly elevated compared with controls only in adenylosuccinate lyase (ADSL) deficiency and TB meningitis. The former representing low permeability, the latter severe damage to the normal blood/brain barrier. By contrast, the similarity to controls, with no difference between Lesch-Nyhan disease (LND) or LND variants, would exclude hypoxia as a factor in the severe neurological deficits in LND. Similar findings in purine nucleoside phosphorylase (PNP) deficiency (although nucleosides replace the normal bases) likewise exclude hypoxia in the aetiology of the albeit milder neurological deficits.  相似文献   

2.
Reports describing the neurological features of Lesch‐Nyhan disease (LND) vary widely, thereby implying the involvement of different neurological substrates. The movement abnormalities in 20 patients with LND were investigated. Dystonia was the most frequent and severe movement disorder. At rest, hypotonia was more frequent than hypertonia. These findings are compatible with basal ganglia dysfunction in LND.  相似文献   

3.
Reports describing the neurological features of Lesch-Nyhan disease (LND) vary widely, thereby implying the involvement of different neurological substrates. The movement abnormalities in 20 patients with LND were investigated. Dystonia was the most frequent and severe movement disorder. At rest, hypotonia was more frequent than hypertonia. These findings are compatible with basal ganglia dysfunction in LND.  相似文献   

4.
Lesch-Nyhan disease (LND) is a severe X-linked neurological disorder caused by a deficiency of hypoxanthine phosphoribosyltransferase (HPRT). In contrast, HPRT-deficiency in the mouse does not result in the profound phenotypes such as self-injurious behavior observed in humans, and the genetic basis for this phenotypic disparity between HPRT-deficient humans and mice is unknown. To test the hypothesis that HPRT deficiency is modified by the presence/absence of phosphoribosyltransferase domain containing 1 (PRTFDC1), a paralog of HPRT that is a functional gene in humans but an inactivated pseudogene in mice, we created transgenic mice that express human PRTFDC1 in wild-type and HPRT-deficient backgrounds. Male mice expressing PRTFDC1 on either genetic background were viable and fertile. However, the presence of PRTFDC1 in the HPRT-deficient, but not wild-type mice, increased aggression as well as sensitivity to a specific amphetamine-induced stereotypy, both of which are reminiscent of the increased aggressive and self-injurious behavior exhibited by patients with LND. These results demonstrate that PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse and could therefore have important implications for unraveling the molecular etiology of LND.  相似文献   

5.
6.
7.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency is an inborn error of purine metabolism responsible for Lesch-Nyhan Disease (LND) and its partial phenotypes, HPRT-related hyperuricemia with neurologic dysfunction (HRND) and hyperuricemia alone. We report here the recognition of six Argentine patients, two with LND and four with HRND. All patients presented elevated excretion of uric acid, hypoxanthine, and xanthine and decreased HPRT enzyme activities <1 nmol/h/mg Hb. The molecular analysis demonstrated in the two LND patients a novel inherited transition mutation, c.203T >C (L68P), in one subject and a germline transition mutation, c.209G >A (G70E), in the other. In the HRND patients a novel transversion mutation, c.584 A >C (Y195S), was found in three related patients and an inherited transition mutation, c.143G >A (R48H), in the fourth subject.  相似文献   

8.
The brindled mouse (MObr/y) carries an X-linked mutation that produces severe copper deficiency. Affected males suffer profound deficits in oxidative metabolism. We have examined astrocyte pathology in MObr/y during development and have found marked changes in the metabolism of glial fibrillary acidic protein (GFAP). Immunocytochemistry with anti-GFAP antisera revealed a marked increase in staining at postnatal day 12 (P12), compared to heterozygous female and unaffected male littermates, particularly in neocortex and thalamus. Septum, hypothalamus, and striatum showed little change. Western blot analysis revealed increased levels of GFAP in MObr/y forebrain and cerebellum. Levels of GFAP mRNA were determined by Northern blotting with a mouse GFAP cDNA probe. At P10, mRNA levels were normal, but increased to 8-10 times normal by P12. Levels at P15 remained similarly elevated. Thus, immunostaining and protein determinations correlate with mRNA elevations. Astrocytes can alter GFAP mRNA and protein levels over a relatively short time. Counts of neocortical cells did not reveal differences in cell numbers between MObr/y and controls, indicating that the observed changes reflect increased cellular levels and not a large increase in the numbers of astrocytes.  相似文献   

9.
Guo LT  Friedmann T  King CC 《Proteomics》2007,7(21):3867-3869
Many diseases of the mammalian CNS, including Parkinson's (PD) and Lesch Nyhan disease (LND), are associated with programmatic neurodegeneration or dysfunction of dopaminergic neurons in the mesencephalon, the nigrostriatal pathway, and its projections in the striatum [1-4]. Proteomic studies on brain tissue of both animal models and human PD patients have provided evidence for dysfunction and damage of many pathways, including oxidative stress-related damage, ubiquitin-proteasome dysfunction, mitochondrial energy metabolism deficiencies, and synaptic function [5-11]. To date no such proteomic studies have been reported in the related and rare basal ganglia disorder LND, a developmental rather than a neurodegenerative neurological disorder caused by deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) that regulates a major step in the purine salvage pathway [12]. Many studies have demonstrated that the both human LND patients and a mouse knockout model of HPRT deficiency have significantly reduced levels and uptake of dopamine in the striatum [4, 13-16] that is likely to be the principal cause of the CNS disorder. The precise molecular and cellular mechanisms that underlie this neurotransmitter defect are unknown.  相似文献   

10.
Mannose-binding lectin (MBL) is an innate immune system pattern recognition molecule that kills a wide range of pathogens via the lectin complement pathway. MBL deficiency is associated with severe infection but the best measure of this deficiency is undecided. We investigated the influence of MBL functional deficiency on the development of sepsis in 195 adult patients, 166 of whom had bloodstream infection and 35 had pneumonia. Results were compared with 236 blood donor controls. MBL function (C4b deposition) and levels were measured by enzyme-linked immunosorbent assay. Using receiver-operator characteristics of MBL function in healthy controls, we identified a level of <0.2 U microL(-1) as a highly discriminative marker of low MBL2 genotypes. Median MBL function was lower in sepsis patients (0.18 U microL(-1)) than in controls (0.48 U microL(-1), P<0.001). MBL functional deficiency was more common in sepsis patients than controls (P<0.001). MBL functional deficient patients had significantly higher sequential organ failure assessment (SOFA) scores and higher MBL function and levels were found in patients with SOFA scores predictive of good outcome. Deficiency of MBL function appears to be associated with bloodstream infection and the development of septic shock. High MBL levels may be protective against severe sepsis.  相似文献   

11.
Lesch-Nyhan disease (LND) is caused by deficiency of hypoxanthine guanine phosphoribosyltransferase (HPRT). The aim of the present study is to characterize the molecular deficiency of a clinical diagnosed Chinese patient with attenuated variant of LND. The coding region and the intron-exon boundaries of HPRT1 gene were sequenced by standard methods, and HPRT activity was assayed by HPLC method. Structure analysis was performed to estimate the consequence of the mutant of HPRT1 gene. A new mutation c.245T>G (p.Ile82Ser) was identified in this patient, and heterozygous mutation was found in the patient's mother. The activity of HPRT in the patient was completely undetectable. Structure study indicates that the mutation of p.Ile82Ser may lead to loss of hydrophobic side chain and disrupt its normal conformation of HPRT protein. It is helpful for diagnosis of LND that sequencing analysis of HPRT1 gene is performed in male infant and juvenile with hyperuricaemia and neurologic dysfunction in Chinese.  相似文献   

12.
Defect of the purine salvage enzyme, hypoxanthine phosphoribosyl transferase (HPRT), results in Lesch-Nyhan disease (LND). It is unknown how the metabolic defect translates into the severe neuropsychiatric phenotype characterized by self-injurious behavior, dystonia and mental retardation. There are abnormalities in GTP, UTP and CTP concentrations in HPRT-deficient cells. Moreover, GTP, ITP, XTP, UTP and CTP differentially support Gs-protein-mediated adenylyl cyclase (AC) activation. Based on these findings we hypothesized that abnormal AC regulation may constitute the missing link between HPRT deficiency and the neuropsychiatric symptoms in LND. To test this hypothesis, we studied AC activity in membranes from primary human skin and immortalized mouse skin fibroblasts, mouse Neuro-2a neuroblastoma cells and rat B103 neuroblastoma cells. In B103 control membranes, GTP, ITP, XTP and UTP exhibited profound stimulatory effects on basal AC activity that approached the effects of hydrolysis-resistant nucleotide analogs. In HPRT- membranes, the stimulatory effects of GTP, ITP, XTP and UTP were strongly reduced. Similarly, in human and mouse skin fibroblast membranes we also observed a decrease in GTP-stimulated AC activity in HPRT-deficient cells compared with the respective controls. In mouse Neuro-2a neuroblastoma membranes, AC activity in the presence of GTP was below the detection limit of the assay. We discuss several possibilities to explain the abnormalities in AC regulation in HPRT deficiency that encompass various species and cell types.  相似文献   

13.
14.
—Studies were made of the effects of pantothenic acid deficiency during the neonatal period on brain lipids in rats. Mothers with 6–8 pups to a litter were fed from soon after birth a diet either normal or deficient in pantothenate. An additional control group (restricted controls) was pair-fed with the deficient group. Significant deficits were found in the pups of the pantothenate-deficient group and in those of the restricted controls with regard to body weight, brain weight and brain concentration of lipids (total lipid, cholesterol, phospholipid, galactolipid and gangliosides) at 21 days of age. The deficits in both these groups were comparable. The results suggest that the effects of pantothenate deficiency may be due to the resulting growth deficit rather than to the deficiency of pantothenate per se.  相似文献   

15.
Advances in the diagnosis and treatment of pediatric malignancies have substantially increased the number of childhood cancer survivors. However, reports suggest that some of the chemotherapy agents used for treatment can cross the blood brain barrier which may lead to a host of neurological symptoms including oculomotor dysfunction. Whether chemotherapy at young age causes oculomotor dysfunction later in life is unknown. Oculomotor performance was assessed with traditional and novel methods in 23 adults (mean age 25.3 years, treatment age 10.2 years) treated with chemotherapy for a solid malignant tumor not affecting the central nervous system. Their results were compared to those from 25 healthy, age-matched controls (mean age 25.1 years). Correlation analysis was performed between the subjective symptoms reported by the chemotherapy treated subjects (CTS) and oculomotor performance. In CTS, the temporal control of the smooth pursuit velocity (velocity accuracy) was markedly poorer (p<0.001) and the saccades had disproportionally shorter amplitude than normal for the associated saccade peak velocity (main sequence) (p = 0.004), whereas smooth pursuit and saccade onset times were shorter (p = 0.004) in CTS compared with controls. The CTS treated before 12 years of age manifested more severe oculomotor deficits. CTS frequently reported subjective symptoms of visual disturbances (70%), unsteadiness, light-headedness and that things around them were spinning or moving (87%). Several subjective symptoms were significantly related to deficits in oculomotor performance. To conclude, chemotherapy in childhood or adolescence can result in severe oculomotor dysfunctions in adulthood. The revealed oculomotor dysfunctions were significantly related to the subjects’ self-perception of visual disturbances, dizziness, light-headedness and sensing unsteadiness. Assessments of oculomotor function may, thus, offer an objective method to track and rate the level of neurological complications following chemotherapy.  相似文献   

16.
Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.  相似文献   

17.
The effects of severe and moderate iron deficiency upon the antibody response to influenza virus were investigated in rats. Three groups of weanling male Wistar rats were fed one of two iron-deficient diets (5 mg and 15 mg iron/kg diet) or a normal iron-containing diet (35 mg iron/kg diet). A group of individually pair-fed rats was introduced with the low iron-consuming rats. The effects of the diets upon various iron status parameters were followed during the 4th, 5th, 6th, and 7th week of diet. After 4 weeks of feeding different diets, an intraperitoneal injection of inactivated influenza virus A/New Jersey/76 was performed and a recall injection was done at 5 weeks. Primary and secondary antibody responses were assayed. Rats were sacrificed at 7 weeks of diet. After 4 weeks of feeding different diets, the rats fed the 5 mg iron/kg diet were severely anemic and rats fed 15 mg iron/kg diet were moderately iron-deficient, as shown by their iron status parameters. Growth was delayed in anemic and matched pair-fed rats. A primary antibody response was almost nonexistent in all groups. Secondary antibody titers were significantly weaker in anemic rats than in ad libitum controls, but were not different from those of pair-fed rats. This response was similar in moderately iron-deficient, ad libitum, and pair-fed rats. These results show that antibody synthesis in response to the influenza virus vaccine is preserved in moderate iron deficiency but is reduced in severe anemia. The reduction in energy consumption associated with severe iron deficiency in the rat could play a part in the altered humoral response.  相似文献   

18.
AimsMagnesium (Mg) deficiency has been reported to be associated with the development of the metabolic syndrome, cardiovascular diseases, and sudden death. We examined the influence of chronic Mg deficiency on cardiac tolerance to hypoxia/reoxygenation injury.Main methodsMice were fed an Mg-deficient diet for 4 weeks, and then their hearts were excised for Langendorff perfusion experiments. The levels of total Mg in the blood and heart were quantified by atomic absorption spectrometry.Key findingsIn Mg-deficient mice, the Mg concentration in whole blood was markedly decreased; however, that in the heart remained unchanged. When the hearts of control mice were exposed to hypoxia/reoxygenation, removal of extracellular Mg from a normal Krebs solution containing 1.2 mM Mg resulted in a significant decrease in the recovery of the tension-rate product (TRP) upon reoxygenation. In Mg-deficient mice, the recovery of TRP in the heart was reduced significantly in the absence of extracellular Mg compared to that in controls. The addition of Mg to the perfusate did not improve TRP recovery. During hypoxia/reoxygenation, cardiac damage evaluated by myocardial aspartate amino trasferase (AST) release was greater in hearts of Mg-deficient mice than in that of control mice.SignificanceThese results indicate that chronic Mg deficiency causes severe hypomagnesemia and a decrease in cardiac tolerance to hypoxia, without changing the intracellular Mg content. The decreased tolerance to hypoxia was not affected by the presence or absence of extracellular Mg, suggesting that some intracellular metabolic abnormalities develop in the cardiac myocytes of Mg-deficient mice.  相似文献   

19.
Since 1984, we have diagnosed at the La Paz University Hospital, Madrid, Spain, 41 patients with hypoxanthine phosphoribosyltransferase (HPRT) activity deficiency. These patients belonged to 34 families. We have also performed molecular and enzymatic diagnosis in three patients from India, one from Belgium, and three from Colombia. About 1/3 of these patients were followed up at La Paz University Hospital at least every year. This fact has allowed us to examine the complete spectrum of HPRT deficiency as well as to perform a more accurate diagnosis and treatment. In the present review, we also summarized our studies on the basis of physiopathology of the neurological manifestation of Lesch Nyhan disease (LND).  相似文献   

20.
Hypoxia at birth is a major source of brain damage and it is associated with serious neurological sequelae in survivors. Alterations in the extracellular turnover of glutamate (Glu) and acetylcholine (ACh), two neurotransmitters that are essential for normal hippocampal function and learning and memory processes, may contribute to some of the neurological effects of perinatal hypoxia. We set out to determine the immediate and long-lasting effects of hypoxia on the turnover of these neurotransmitters by using microdialysis to measure the extracellular concentration of Glu and ACh in hippocampus, when hypoxia was induced in rats at postnatal day (PD) 7, and again at PD30. In PD7 rats, hypoxia induced an increase in extracellular Glu concentrations that lasted for up to 2.5 h and a decrease in extracellular ACh concentrations over this period. By contrast, perinatal hypoxia attenuated Glu release in asphyxiated rats, inducing a decrease in basal Glu levels when these animals reached PD30. Unlike Glu, the basal ACh levels in these animals were greater than in controls at PD30, although ACh release was stimulated less strongly than in control animals. These results provide the first evidence of the initial and long term consequences of the hypoxia on Glu and ACh turnover in the brain, demonstrating that hypoxia produces significant alterations in hippocampal neurochemistry and physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号