首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active loading of liposomes with dopamine in response to an ammonium sulfate gradient was studied. This method can be regarded as a mean to more efficiently improve the liposomal dopamine/lipids ratio in comparison to conventional methods of liposome preparation. Trapping efficiency of dopamine into liposomes exhibiting a transmembrane ammonium sulfate gradient was shown to be dependent on liposome lipid composition, lipid concentration and temperature. Dopamine-containing liposomes with α-tocopherol in the lipid bilayer were shown to be stable at least for three weeks. It has been found that intraperitoneal (i.p.) administration of conventionally prepared dopamine-containing liposomes as well as liposomes with increased dopamine/lipid ratio may efficiently suppress the expression of parkinsonian symptoms in C57BL/6 mice with experimental parkinsonian syndrome. On the other hand, only through increasing of liposomal dopamine/lipid ratio the complete compensation of dopamine deficiency in the mice brain was achieved. The obtained data may be considered as biochemical evidence in favor of liposomes' ability to act as a carrier system for the delivery of dopamine into the brain.  相似文献   

2.
Liposomes are effectively used in the treatment of microbial infections. Higher cellular uptake has been reported when antibiotics are encapsulated in liposomes. In this study, enrofloxacin (ENF) was encapsulated in large unilamellar vesicles (LUVs) and the effects of formulation variables on the liposome characteristics were investigated. Liposomes were prepared using dry lipid film method. A number of variables such as molar ratios of phospholipid (DPPC; DL-alpha-phosphatidylcholine dipalmitoyl), cholesterol, ENF and amount of alpha-tocopherol and the volumes of internal (chloroform) and external phases [phosphate buffered saline PBS (pH 7.4)] were studied. In vitro characterization of the liposomes including the encapsulation capacity, size and drug release properties were carried out. Using of this method, spherical LUV liposomes with high drug content could be produced. Particle size of liposomes changed between 3.12 and 4.95 microm. The molar ratios of DPPC, cholesterol and ENF affected the size of the liposome (p < 0.05). The drug encapsulation capacities were high and changed between 37.1% and 79.5%. The highest ENF encapsulation was obtained with the highest cholesterol content. An increase in the drug encapsulation capacity of the liposome was found with increasing molar ratios of DPPC, cholesterol and ENF (p < 0.05). Furthermore, the release of ENF from the liposomes decreased as the molar ratios of DPPC, cholesterol and ENF increased (p < 0.05). In conclusion, a convenient colloidal carrier for the controlled release of ENF can be prepared by changing the formulation parameters of LUVs.  相似文献   

3.
Liposomes are effectively used in the treatment of microbial infections. Higher cellular uptake has been reported when antibiotics are encapsulated in liposomes. In this study, enrofloxacin (ENF) was encapsulated in large unilamellar vesicles (LUVs) and the effects of formulation variables on the liposome characteristics were investigated. Liposomes were prepared using dry lipid film method. A number of variables such as molar ratios of phospholipid (DPPC; DL‐α‐phosphatidylcholine dipalmitoyl), cholesterol, ENF and amount of α‐tocopherol and the volumes of internal (chloroform) and external phases [phosphate buffered saline PBS (pH 7.4)] were studied. In vitro characterization of the liposomes including the encapsulation capacity, size and drug release properties were carried out. Using of this method, spherical LUV liposomes with high drug content could be produced. Particle size of liposomes changed between 3.12 and 4.95 µm. The molar ratios of DPPC, cholesterol and ENF affected the size of the liposome (p < 0.05). The drug encapsulation capacities were high and changed between 37.1% and 79.5%. The highest ENF encapsulation was obtained with the highest cholesterol content. An increase in the drug encapsulation capacity of the liposome was found with increasing molar ratios of DPPC, cholesterol and ENF (p < 0.05). Furthermore, the release of ENF from the liposomes decreased as the molar ratios of DPPC, cholesterol and ENF increased (p < 0.05). In conclusion, a convenient colloidal carrier for the controlled release of ENF can be prepared by changing the formulation parameters of LUVs.  相似文献   

4.
Abstract

The toxicity and efficacy properties of doxorubicin entrapped inside liposomes are sensitive to the physical characteristics of the vesicle carrier system. Studies addressing such relationships must use preparation procedures with the ability to independently vary vesicle size, lipid composition and drug to lipid ratio while maintaining high trapping efficiencies. The transmembrane pH gradient-driven encapsulation technique allows such liposomal doxorubicin formulations to be prepared. Pharmacokinetic, toxicology and antitumour studies with these systems have revealed several important relationships between liposome physical properties and biological activity. The acute toxicity of liposomal doxorubicin is related primarily to the ability of the liposomes to retain doxorubicin after administration. Including cholesterol and increasing the degree of acyl chain saturation of the phospholipid component in the liposomes significantly decreases drug leakage in the blood, reduces cardiac tissue accumulation of doxorubicin and results in increased LD50 values. In contrast, the efficacy of liposomal doxorubicin is most influenced by liposome size. Specifically, liposomes with a diameter of approximately 100 nm or less exhibit enhanced circulation lifetimes and antitumour activity. While these relationships appear to be rather straightforward, there exist anomalies which suggest that a more thorough evaluation of liposomal doxorubicin pharmacokinetics may be required in order to fully understand its mechanism of action. A key feature in this regard is the ability to differentiate between non-encapsulated and liposome encapsulated doxorubicin pools in the circulation as well as in tumours and normal tissues. This represents a major challenge that must be addressed if significant advances in the design of more effective liposomal doxorubicin formulations are to be achieved.  相似文献   

5.
Abstract

A simple method has been developed to prepare liposomes containing large amounts of DNA. The procedure consisted of three cycles of freeze-thawing a mixture of sonicated liposomes and DNA. The encapsulation efficiency depended on the size of DNA. For a small plasmid (2.7 kb), approximately 40% of input DNA was entrapped with an efficiency of 16 μgDNA/μmol lipid. For larger plasmids, the encapsulation efficiency decreased considerably. Transfection of cultured mouse L929 cells mediated by the DNA-containing liposomes was assayed with a plasmid containing the E. coli chloramphenicol acetyl transferase gene. The transfection activity of the liposome was primarily determined by its pH sensitivity. Acid-sensitive liposomes transfected cells efficiently, whereas pH-insensitive liposomes were much less active. The level of the expression of the exogenous gene in the treated cells could be further modulated by protein kinase C (PKC) activators that were incorporated into the liposomal membrane as a minor lipid component. Transfection conditions were optimized with respect to DNA, lipid, and PKC activator concentrations. The results of the current study may help the use of liposomal delivery system for applications in gene therapy.  相似文献   

6.
Application of cholesterol-free liposomes as carriers for anticancer drugs is hampered, in part, because of standard pH gradient based loading methods that rely on incubation temperatures above the phase transition temperature (Tc) of the bulk phospholipid to promote drug loading. In the absence of cholesterol, liposome permeability is enhanced at these temperatures which, in turn, can result in the collapse of the pH gradient and/or unstable loading. Doxorubicin loading studies, for example, indicate that the drug could not be loaded efficiently into cholesterol-free DSPC liposomes. We demonstrated that this problem could be circumvented by the addition of ethanol as a permeability enhancer. Doxorubicin loading rates in cholesterol-free DSPC liposomes were 6.6-fold higher in the presence of ethanol. In addition, greater than 90% of the added doxorubicin was encapsulated within 2 h at 37 degrees C, an efficiency that was 2.3-fold greater than that observed in the absence of ethanol. Optimal ethanol concentrations ranged from 10% to 15% (v/v) and these concentrations did not significantly affect liposome size, retention of an aqueous trap marker (lactose) or, most importantly, the stability of the imposed pH gradient. Cryo-transmission electron micrographs of liposomes exposed to increasing concentrations of ethanol indicated that at 30% (v/v) perturbations to the lipid bilayer were present as evidenced by the appearance of open liposomes and bilayer sheets. Ethanol-induced increased drug loading was temperature-, lipid composition- and lipid concentration-dependent. Collectively, these results suggest that ethanol addition to preformed liposomes is an effective method to achieve efficient pH gradient-dependent loading of cholesterol-free liposomes at temperatures below the Tc of the bulk phospholipid.  相似文献   

7.
8.
Application of cholesterol-free liposomes as carriers for anticancer drugs is hampered, in part, because of standard pH gradient based loading methods that rely on incubation temperatures above the phase transition temperature (Tc) of the bulk phospholipid to promote drug loading. In the absence of cholesterol, liposome permeability is enhanced at these temperatures which, in turn, can result in the collapse of the pH gradient and/or unstable loading. Doxorubicin loading studies, for example, indicate that the drug could not be loaded efficiently into cholesterol-free DSPC liposomes. We demonstrated that this problem could be circumvented by the addition of ethanol as a permeability enhancer. Doxorubicin loading rates in cholesterol-free DSPC liposomes were 6.6-fold higher in the presence of ethanol. In addition, greater than 90% of the added doxorubicin was encapsulated within 2 h at 37 °C, an efficiency that was 2.3-fold greater than that observed in the absence of ethanol. Optimal ethanol concentrations ranged from 10% to 15% (v/v) and these concentrations did not significantly affect liposome size, retention of an aqueous trap marker (lactose) or, most importantly, the stability of the imposed pH gradient. Cryo-transmission electron micrographs of liposomes exposed to increasing concentrations of ethanol indicated that at 30% (v/v) perturbations to the lipid bilayer were present as evidenced by the appearance of open liposomes and bilayer sheets. Ethanol-induced increased drug loading was temperature-, lipid composition- and lipid concentration-dependent. Collectively, these results suggest that ethanol addition to preformed liposomes is an effective method to achieve efficient pH gradient-dependent loading of cholesterol-free liposomes at temperatures below the Tc of the bulk phospholipid.  相似文献   

9.
The objective of this study was to develop an efficient tumor vasculature targeted liposome delivery system for combretastatin A4, a novel antivascular agent. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG), and DSPE-PEG-maleimide were prepared by the lipid film hydration and extrusion process. Cyclic RGD (Arg-Gly-Asp) peptides with affinity for αvβ3-integrins expressed on tumor vascular endothelial cells were coupled to the distal end of PEG on the liposomes sterically stabilized with PEG (long circulating liposomes, LCL). The liposome delivery system was characterized in terms of size, lamellarity, ligand density, drug loading, and leakage properties. Targeting nature of the delivery system was evaluated in vitro using cultured human umbilical vein endothelial cells (HUVEC). Electron microscopic observations of the formulations revealed presence of small unilamellar liposomes of ∼120 nm in diameter. High performance liquid chromatography determination of ligand coupling to the liposome surface indicated that more than 99% of the RGD peptides were reacted with maleimide groups on the liposome surface. Up to 3 mg/mL of stable liposomal combretastatin A4 loading was achieved with ∼80% of this being entrapped within the liposomes. In the in vitro cell culture studies, targeted liposomes showed significantly higher binding to their target cells than non-targeted liposomes, presumably through specific interaction of the RGD with its receptors on the cell surface. It was concluded that the targeting properties of the prepared delivery system would potentially improve the therapeutic benefits of combretastatin A4 compared with nontargeted liposomes or solution dosage forms.  相似文献   

10.
The encapsulation of enzymes in microenvironments and especially in liposomes, has proven to greatly improve enzyme stabilization against unfolding, denaturation and dilution effects. Combining this stabilization effect, with the fact that liposomes are optically translucent, we have designed nano-sized spherical biosensors. In this work liposome-based biosensors are prepared by encapsulating the enzyme acetylcholinesterase (AChE) in L-a phosphatidylcholine liposomes resulting in spherical optical biosensors with an average diameter of 300+/-4 nm. Porins are embedded into the lipid membrane, allowing for the free substrate transport, but not that of the enzyme due to size limitations. The enzyme activity within the liposome is monitored using pyranine, a fluorescent pH indicator. The response of the liposome biosensor to the substrate acetylthiocholine chloride is relatively fast and reproducible, while the system is stable as has been shown by immobilization within sol-gel.  相似文献   

11.
The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models.  相似文献   

12.
To investigate the encapsulation of Print 3G, a peptidic agent that could reduce the angiogenic development of breast tumors, pegylated liposomes used as intravenous vectors were studied and characterized. Recently, the path of liposomes has been explored with success to improve the pharmacological properties of peptidic drugs and to stabilize them. In this study, loaded unilamellar vesicles composed of SPC:CHOL:mPEG2000-DSPE (47:47:6) were prepared by the hydration of lipid film technique. An HPLC method was developed and validated for the determination of Print 3G to calculate its encapsulation efficiency. Observed Print 3G adsorption on different materials employed during liposome preparation (such as glass beads, tubing, and connections for extrusion) led to the modification of the manufacturing method. The freeze-thawing technique was used to enhance the amount of Print 3G encapsulated into blank liposomes prepared using the hydration of lipid film procedure. Many factors may influence peptide entrapment, namely the number of freeze-thawing cycles, the lipid concentration, the peptide concentration, and the mixing time. Consequently, a design of experiments was performed to obtain the best encapsulation efficiency while minimizing the number of experiments. The lipid concentration and the number of freeze-thawing cycles were identified as the positive factors influencing the encapsulation. As a result of the optimization, an optimum was found and encapsulation efficiencies were improved from around 30% to 63%. Liposome integrity was evaluated by photon correlation spectroscopy and freeze-fracture electron microscopy to ensure that the selected formulation possesses the required properties to be a potential candidate for further in vitro and in vivo experiments.  相似文献   

13.
The escape of encapsulated anticancer drugs from liposomes by passive diffusion often leads to suboptimal drug concentrations in the cancer tissue, therefore calling for effective trigger mechanisms to release the drug at the target. We investigated mixtures of lipid components that not only form stable liposomes, but also can be turned into active drugs by secretory phospholipase A? (sPLA?), an enzyme that is upregulated in various cancer cells, without the necessity for conventional liposome drug loading. The liposomes are composed of a novel lipid-based retinoid prodrug premixed with saturated phospholipids. The prodrug is found to be miscible with phospholipids, and the lipid mixtures are shown to form liposomes with the desired size distribution. The preparation procedure, phase behavior, and physicochemical properties of the formed liposomes are described as a function of lipid composition. We show that the premixing of the prodrug with phospholipids can be used to modify the physicochemical properties of liposomal formulations. The results should prove useful for further exploration of the potential for using these novel lipid prodrugs in liposomal formulations for cancer treatment.  相似文献   

14.
The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models.  相似文献   

15.
A new scalable liposome production system is presented, which is based on the ethanol injection technique. The system permits liposome manufacture regardless of production scale, as scale is determined only by free disposable vessel volumes. Once the parameters are defined, an easy scale up can be performed by just changing the process vessels. These vessels are fully sterilizeable and all raw materials are transferred into the sanitized and sterilized system via 0.2 μm filters to guarantee an aseptic production.

Liposome size can be controlled by the local lipid concentration at the injection point depending on process parameters like injection pressure, lipid concentration and injection rate. These defined process parameters are furthermore responsible for highly reproducible results with respect to vesicle diameters and encapsulation rates Compared to other technologies like the film method which is normally followed by size reduction through high pressure homogenization, ultrasonication or extrusion, no mechanical forces are needed to generate homogeneous and narrow distributed liposomes.

Another important advantage of this method is the suitability for the entrapment of many different drug substances such as large hydrophilic proteins by passive encapsulation, small amphiphilic drugs by a one step remote loading technique or membrane association of antigens for vaccination approaches  相似文献   

16.
A new scalable liposome production system is presented, which is based on the ethanol injection technique. The system permits liposome manufacture regardless of production scale, as scale is determined only by free disposable vessel volumes. Once the parameters are defined, an easy scale up can be performed by just changing the process vessels. These vessels are fully sterilizeable and all raw materials are transferred into the sanitized and sterilized system via 0.2 microm filters to guarantee an aseptic production.Liposome size can be controlled by the local lipid concentration at the injection point depending on process parameters like injection pressure, lipid concentration and injection rate. These defined process parameters are furthermore responsible for highly reproducible results with respect to vesicle diameters and encapsulation rates Compared to other technologies like the film method which is normally followed by size reduction through high pressure homogenization, ultrasonication or extrusion, no mechanical forces are needed to generate homogeneous and narrow distributed liposomes.Another important advantage of this method is the suitability for the entrapment of many different drug substances such as large hydrophilic proteins by passive encapsulation, small amphiphilic drugs by a one step remote loading technique or membrane association of antigens for vaccination approaches.  相似文献   

17.
Liposomes have been prepared by the vesicle extrusion method (VETs) from mixtures of dipalmitoylphosphatidylcholine (DPPC), phosphatidylinositol (PI) and dipalmitoylphosphatidylethanolamine with covalently linked poly(ethylene glycol) molecular mass 5000 and 2000 (DPPE-PEG 5000 and DPPE-PEG 2000) covering a range of 0-7.5 mole%. The encapsulation of D-glucose has been studied and found to be markedly dependent on the mole% DPPE-PEG. The permeability of the liposomes to D-glucose has been measured both as a function of temperature and liposome composition. The permeability coefficients for D-glucose increase with mole% DPPE-PEG 5000 and with temperature over the range 25-50 degrees C. The activation energies for glucose permeability range from 90 to 23 kJ mol(-1). The decrease in activation energy with increasing temperature is attributed to an increasing number of bilayer defects as the liposome content of PEG-grafted lipid is increased. The dependence of D-glucose encapsulation as a function of PEG-grafted lipid content is discussed in terms of the conformation of the PEG molecules on the inner surface of the bilayer. For liposomes containing DPPE-PEG 5000 the relative percentage encapsulation of glucose, assuming that the PEG surface layer excludes glucose, is comparable to that predicted from the mushroom and brush conformational models.  相似文献   

18.
Three types of pyranine (HPTS)-containing liposomes were prepared by high-pressure homogenization under optimized conditions. At 37°C, they were 1) fluid-state vesicles made from soybean phosphatidylcholine (SPC), 2) gel-state liposomes made from hydrogenated SPC (HSPC), and 3) solid-disordered membranes obtained from HSPC and cholesterol (HSPC-Chol). These liposome formulations were characterized before, during, and after in vitro digestion, which involved the presence of pH gradients, enzymes, and bile salts. Mean sizes and size distributions of the vesicles were determined by DLS; 31P-NMR (nuclear magnetic resonance) was used to quantify lyso-PC forms; internal pH was monitored throughout digestion with two different fluorescent pH probes; and changes in bilayer permeability and HPTS encapsulation were determined by size-exclusion chromatography and fluorimetry. Differential scanning calorimetry analysis was also performed in order to study the effect of digestion on HSPC vesicles. SPC liposomes were physically stable during digestion; they presented 8% lyso-forms and an HPTS encapsulation around 85% after in vitro digestion. However, they were extremely permeable to ions, so that the internal pH immediately equilibrated with the bulk pH. HSPC liposomes were the most affected by the digestive process. Even though they were chemically stable, as inferred from the low lyso-PC content, very important changes in their size distribution were observed. A final 50% HPTS leakage was quantified after in vitro digestion. Nevertheless, they were the least permeable to protons under pH gradients. HSPC-Chol vesicles presented intermediate permeability to protons, having their internal pH decreased from approximately 6.8 to 4.6 after 1 hour of incubation at pH 2. This was the most chemically stable formulation and showed the highest encapsulation, even after in vitro digestion. Therefore, HSPC-Chol liposomes would be the most adequate choice for the design of lipid products for oral administration.  相似文献   

19.
In this study, NOH (NOH?=?N-octadecyl-4-[(D-galactopyranosyl)oxy]-2,3,5,6-tetrahydroxy hexanamide) was enzymatically synthesized as a targeting molecule and incorporated into liposomes to prepare a liposome surface modified with galactose. Glycyrrhetinic-acid-loaded liposome (GA-LP) and glycyrrhetinic-acid-loaded liposome surface modified with galactose (NOH-GA-LP) were prepared by the ethanol-injection method. NOH-GA-LP was characterized by morphology, particle size, zeta potential, encapsulation efficiency, release in vitro, and stability. The size of spherical particles was in the range of 179-211?nm. Spherical particles exhibit a positive electrical charge (38.7 mV) and possess high encapsulation efficiency (91.3%) and show sustained release (72% over 48 hours) in vitro. This novel approach for the liposome surface modified with galactose by enzymatic synthesis is expected to provide potential application as a drug carrier for active targeted delivery to hepatocytes.  相似文献   

20.
A novel transmembrane pH gradient active loading method to prepare alkaloids binary ethosomes was developed in this work. Using this novel method, binary ethosomes containing total alkaloids extracted from Sophora alopecuroides (TASA) were prepared successfully at the temperature below the phase transition temperature (Tc) of the phosphatidyl choline (PC). Several factors affecting this method were investigated. The qualities of the TASA binary ethosomes were characterized by the shape, particle size, and encapsulation efficiency (EE). The percutaneous absorption study of TASA binary ethosomes was performed using confocal laser scanning microscopy and Franz diffusion cells. The results showed that more than 90% sophoridine, 47% matrine, 35% sophocarpine, and 32% lemannine in TASA were entrapped within 1 h at 40°C, with an efficiency improvement of 8.87, 8.10, 7.63, and 7.78-fold than those observed in passive loading method. Transdermal experiments showed that the penetration depth and fluorescence intensity of Rhodamine B from binary ethosome prepared by pH gradient active loading method were much greater than that from binary ethosome prepared by passive loading method or hydroalcoholic solution. These results suggested transmembrane pH gradient active loading method may be an effective method to prepare alkaloids ethosomal systems at the temperatures below the Tc of PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号