首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of phosphonate analogues of the antiviral cyclopropane nucleoside A-5021 were synthesized from (1S*, 7R*)-3,5-dioxa-4,4-diphenylbicyclo[5. 1.0]octane-l-methanol by a 10-step process. In contrast to the potent antiherpetic activity of A-5021, they were all devoid of antiviral activity.  相似文献   

2.
Cyclobutane analogues of the antiviral cyclopropane nucleoside A-5021 were synthesized from 1-cyano-1,2-bis(methoxycarbonyl)cyclobutane via 1) isolation of both diastereomers by crystallization, 2) reduction to aminodiol, 3) coupling with 2-amino-4,6-dichloropyrimidine, and 4) guanine ring formation. Despite their structural resemblance to A-5021, the compounds were devoid of antiherpetic activity.  相似文献   

3.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

4.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2),varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and-methenyl derivatives (A-5021 and synguanol) and the 6-membered D-and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5′-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- andL-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

5.
Abstract

Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus (i.e. HSV-1, HSV-2, VZV and HCMV) infections. In recent years, several new guanosine analogues have been developed, including the 3-membered (cyclopropyl) sugar derivative A-5021 and the 6-membered D- and L-cyclohexenyl derivatives. Prominent features shared by all guanosine analogues are the following. They depend for their phosphorylation on the virus-encoded thymidine kinase (TK), which makes them particularly effective against those viruses (HSV-1, HSV-2 and VZV) that encoded for such TK. They are also active against HCMV, whether or not they are subject of phosphorylation by the HCMV-induced UL97 protein kinase. Their antiviral activity can be markedly potentiated by mycophenolic acid, an IMP dehydrogenase inhibitor, and they hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also as antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transfected by the viral TK gene.  相似文献   

6.
Abstract

A novel series of 5-nitro-1H-benzimidazole derivatives substituted at position 1 by heterocyclic rings was synthesized. Cytotoxicity and antiviral activity of the new compounds were tested. Compound 3 was more active than doxorubicin against A-549, HCT-116 and MCF-7. However, compound 3 showed no activity against human liver carcinoma Hep G-2 cell line. Compounds 9 and 17b (E) showed potency near to doxorubicin against the four cell lines. The acute toxicity of compound 9 on liver cancer induced in rats was determined in vivo. Interestingly, it showed restoration activity of liver function and pathology towards normal as compared to the cancer-bearing rats induced by DENA. Compounds 17a (Z), 17b (E) and 18a (Z) were the most promising compounds for their antiviral activity against rotavirus Wa strain.  相似文献   

7.
Abstract

A new series of benzothiazol-2-ylcarbamodithioate functional compounds 5a-f has been designed, synthesized and characterized by spectral data. These compounds were screened for their in vitro antibacterial activity against strains of Staphylococcus aureus (NCIM 5021, NCIM 5022 and methicillin-resistant isolate 43300), Bacillus subtilis (NCIM 2545), Escherichia coli (NCIM 2567), Klebsiella pneumoniae (NCIM 2706) and Psudomonas aeruginosa (NCIM 2036). Compounds 5a and 5d exhibited significant activity against all the tested bacterial strains. Specifically, compounds 5a and 5d showed potent activity against K. pneumoniae (NCIM 2706), while compound 5a also displayed potent activity against S. aureus (NCIM 5021). Compound 5d showed minimum IC50 value of 13.37?μM against S. aureus MurD enzyme. Further, the binding interactions of compounds 5a-f in the catalytic pocket have been investigated using the extra-precision molecular docking and binding free energy calculation by MM-GBSA approach. A 30?ns molecular dynamics simulation of 5d/modeled S. aureus MurD enzyme was performed to determine the stability of the predicted binding conformation.  相似文献   

8.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus (i.e. HSV-1, HSV-2, VZV and HCMV) infections. In recent years, several new guanosine analogues have been developed, including the 3-membered (cyclopropyl) sugar derivative A-5021 and the 6-membered D- and L-cyclohexenyl derivatives. Prominent features shared by all guanosine analogues are the following. They depend for their phosphorylation on the virus-encoded thymidine kinase (TK), which makes them particularly effective against those viruses (HSV-1, HSV-2 and VZV) that encoded for such TK. They are also active against HCMV, whether or not they are subject of phosphorylation by the HCMV-induced UL97 protein kinase. Their antiviral activity can be markedly potentiated by mycophenolic acid, an IMP dehydrogenase inhibitor, and they hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also as antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transfected by the viral TK gene.  相似文献   

9.
The rRNA depurination activities of five ribosome-inactivating proteins (RIPs) were compared in vitro using yeast and tobacco leaf ribosomes as substrates. All of the RIPs (pokeweed antiviral protein (PAP), dianthin 32, tritin, barley RIP and ricin A-chain) were active on yeast ribosomes. PAP and dianthin 32 were highly active and ricin A-chain weakly active on tobacco ribosomes, whereas tritin and barley RIP were inactive. PAP and dianthin 32 were highly effective in inhibiting the formation of local lesions caused by tobacco mosaic virus (TMV) on tobacco leaves, whereas tritin, barley RIP and ricin A-chain were ineffective. The apparent anomaly between the in vitro rRNA depurination activity, but lack of antiviral activity of ricin A-chain was further investigated by assaying for rRNA depurination in situ following the topical application of the RIP to leaves. No activity was detected, a finding consistent with the apparent lack of antiviral activity of this RIP. Thus, it is concluded that there is a positive correlation between RIP-catalysed depurination of tobacco ribosomes and antiviral activity which gives strong support to the hypothesis that the antiviral activity of RIPs works through ribosome inactivation.  相似文献   

10.
Long-term phenotypic and genotypic stability is a fundamental prerequisite for the successful biotechnological exploitation of any micro-organism, as without stable starter cultures productivity can not be guaranteed. In this study two biotechnological algal production strains; Porphyridium cruentum A-408, which produces zeaxanthin, and Planktothrix A-404, which produces a potent cytotoxin, were successfully cryopreserved using a two step protocol (cooling to −40 C prior to plunging into liquid nitrogen). Post-thaw viability levels of 114 ± 27% were obtained for P. cruentum A-408 and 67 ± 18% for Planktothrix A-404. Unchanged productivity levels of Zeaxanthin and beta-carotene (77% and 12% of total carotenoids respectively) were obtained in batches of P. cruentum A-408 produced from standard (serial transfer) and utilizing post-thaw (ex-cryopreserved) inocula. In addition, cytotoxin production by Planktothrix A-404 was not influenced by the origin of the inoculum, with standard (serial transfer) and post-thaw (ex-cryopreserved) inocula giving high levels of activity.  相似文献   

11.
12.
Abstract

Ribavirin and tiazofurin, two nucleosides of known antiviral activity, have been transformed by previously reported methods to yield several deoxy,epoxy, or dideoxy analogues. The deoxygenated derivatives were evaluated for antiviral activity against a host of DNA and RNA viruses; however, no significant in vitro activity was detected.  相似文献   

13.
N-Carbamyl-D-amino acid amidohydrolase (DCase), produced with recombinant Escherichia coli cells using a cloned gene from Agrobacterium sp. strain KNK712, has been immobilized for use in the production of D-amino acids. The porous polymers, Duolite A-568 and Chitopearl 3003, were much better than other resins for the activity and stability of the adsorbed enzyme. The activity of DCase expressed on Duolite A-568 and Chitopearl 3003 amounted to 96 units/g-wet-resin and 91 units/g-wet-resin, respectively. DCase immobilized on Duolite A-568 was found to be most stable at about pH 7, and it was further stabilized by reductants such as dithiothreitol, L-cysteine, cysteamine, and sodium hydrosulfite. The stability during the repeated batch reactions was greatly improved when dithiothreitol was in the reaction mixture, and the higher crosslinking degree with glutaraldehyde also stabilized the immobilized enzyme. After 14 times repeated reactions, the remaining activity of the immobilized enzyme cross-linked with 0.1% and 0.2% of glutaraldehyde, and 0.2% of glutaraldehyde with dithiothreitol in the reaction mixture was 12%, 18%, and 63%, respectively. DCase produced with Pseudomonas sp. strain KNK003A and Pseudomonas sp. strain KNK505, which are thermotolerant soil bacteria, and that with Agrobacterium sp. strain KNK712 were also immobilized on Duolite A-568. The stability of the enzymes of thermotolerant bacteria during reactions was superior to that of Agrobacterium sp. strain KNK712, though the activity was lower than that of strain KNK712.  相似文献   

14.
The in vitro cytotoxic activity in Vero cells and the antiviral activity of Erythrina speciosa methanol extract, fractions, and isolated vitexin were studied. The results revealed that E. speciosa leaves ethyl acetate soluble fraction of the methanol extract (ESLE) was the most active against herpes simplex virus type 1 (HSV‐1). Bioactivity‐guided fractionation was performed on ESLE to isolate the bioactive compounds responsible for this activity. One sub‐fraction from ESLE (ESLE IV) showed the highest activity against HSV‐1 and Hepatitis A HAV‐H10 viruses. Vitexin isolated from ESLE VI exhibited a significant antiviral activity (EC50=35±2.7 and 18±3.3 μg/mL against HAV‐H10 and HSV‐1 virus, respectively), which was notably greater than the activity of the extract and the fractions. Molecular docking studies were carried out to explore the molecular interactions of vitexin with different macromolecular targets. Analysis of the in silico data together with the in vitro studies validated the antiviral activity associated with vitexin. These outcomes indicated that vitexin is a potential candidate to be utilized commendably in lead optimization for the development of antiviral agents.  相似文献   

15.
This study demonstrated the potential of microbial isolates from Antarctic soils to produce hydrolytic enzymes by using specific substrates. The results revealed potential of the strains to produce a broad spectrum of hydrolytic enzymes. Strain A-1 isolated from soil samples in Casey Station, Wilkes Land, was identified as Nocardioides sp. on the basis of morphological, biochemical, physiological observations and also chemotaxonomy analysis. Enzymatic and antimicrobial activities of the cell-free supernatants were explored after growth of strain A-1 in mineral salts medium supplemented with different carbon sources. It was found that the carbon sources favored the production of a broad spectrum of enzymes as well as compounds with antimicrobial activity against Gram-positive and Gram-negative bacteria, especially Staphylococcus aureus and Xanthomonas oryzae. Preliminary analysis showed that the compounds with antimicrobial activity produced by the strain A-1 are mainly glycolipids and/or lipopeptides depending on the used carbon source. The results revealed a great potential of the Antarctic Nocardioides sp. strain A-1 for biotechnological, biopharmaceutical and biocontrol applications as a source of industrially important enzymes and antimicrobial/antifungal compounds.  相似文献   

16.
Abstract

The antiviral activity of PS-ODNs, complementary to different regions of the CVB3 genome, was investigated under in vitro conditions. Inhibition of CVB3 replication was detected only after prolonged pretreatment of HeLa cells with antiviral active PS-ODNs, but not when virus and PS-ODN were applicated simultaneously. Results from flow cytometric analysis indicate that a low cellular uptake of anti-CVB3 oligonucleotides into HeLa cells might be a reason for their moderate antiviral activity.  相似文献   

17.
New nitrogen-containing derivatives of betulinic and betulonic acids, hydrazides and N"-benzalhydrazides, were synthesized. Their antiviral activities toward viruses of influenza A virus, herpes simplex type I virus, enterovirus ECHO6, and HIV-1 were studied in vitro. Betulinic acid 3-oxime was found to have the highest activity against the influenza virus. Betulonic acid, betulinic acid 4-chlorobenzalhydrazide, betulonic acid 3-oxime benzalhydrazide, and betulinic acid hydrazide inhibited the replication of herpes simplex type I virus. Betulinic acid hydrazide also showed antiviral activity toward HIV-1. All the derivatives of betulinic acid under study displayed a low antiviral activity toward enterovirus ECHO6.  相似文献   

18.
To examine whether protein kinase C (PKC) contributes to p53-dependent WAF1 induction after heat treatment, the effects of calphostin C (CAL), a specific inhibitor of PKC, on WAF1 induction were analyzed by PKC activity and gel mobility-shift assays and Western blot analysis in human glioblastoma cell lines. Heat-induced accumulation of WAF1 in A-172 cells carrying wild-typep53(wtp53) was suppressed by CAL in a dose-dependent manner. In T98G cells carrying mutantp53(mp53), no significant accumulation of WAF1 was observed after heat treatment and CAL exerted no significant effects on this response of T98G cells. In accordance with the accumulation of WAF1, heat-induced activation of the binding ability of p53 to p53 consensus sequence (p53 CON) was suppressed by CAL in A-172 cells but no DNA-binding activity was observed in the mp53 in T98G cells. PKC in A-172 cells was activated rapidly (within 5 min) after heat treatment in the membrane fraction but not in the cytosolic fraction. When the cell lines were treated with the PKC activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), WAF1 was accumulated in A-172 cells in a dose-dependent manner but not in T98G cells. In addition, the cellular contents of WAF1 after heating did not increase in A-172 cells transformed with mp53.These results suggest that PKC contributes to heat-induced signal transduction leading to p53-dependent WAF1 induction in a way that PKC is involved in the specific DNA-binding activation of p53.  相似文献   

19.
Abstract

2-Mercapto-5,6-dichlorobenzimidazole β-D-ribofuranonucleoside derivatives 8–10 have been synthesized and their antiviral properties examined. According to the glycosylation procedure used, the β-D-N-1 isomer (and the N, N-bis-riboside) or the β-D-S2-isomer have been obtained. All the prepared compounds were tested for their activity against a variety of RNA and DNA viruses, but they did not show significant antiviral activity.  相似文献   

20.
Twenty four strains representing eight species of gram positive yellow-pigmented rods (Oerskovia turbata, Oerskovia xanthineolytica, CDC Coryneform groups A-3, A-4, A-5, Listeria denitrificans, Corynebacterium aquaticum and Brevibacterium acetylicum) were divided into two major groups based on the relative amounts of 12 methyltetradecanoate (15:0a) obtained by capillary gas liquid chromatography. O. turbata, O. xanthineolytica, CDC groups A-3 and A-4, L. denitrificans and C. aquaticum were placed in the first group due to the presence of a higher percentage (29–47%) of 15:0a, than CDC group A-5 and B. acetylicum. The latter contained 2–6% of this fatty acid, and were placed in the second group.All species in the two groups except C. aquaticum and CDC group A-4, were further separated from each other based on the qualitative and quantitative differences in their fatty acid compositions. In addition, the eight strains of CDC group A-5 revealed four different patterns and were further divided into four subgroups. This study supports the importance of the composition of cellular fatty acids in differentiating some closely related organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号