首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Krishnan  T. P. Seshadri 《Biopolymers》1994,34(12):1637-1646
Sequence analysis of msDNA from bacterium such as Stigmatella aurantiaca, Myxococcus xanthus and Escherichia coli B revealed that the guanine residue of the single-stranded RNA is linked to the cytosine residue of the msDNA through a 2′–5′ instead of a conventional 3′–5′ phosphodiester bond. We have now obtained the crystal structure of the self-complementary dimer guanylyl-2′,5′-cytidine (G2′p5′C) that occurs at the msDNA-RNA junction. G2′p5′C crystallizes in the orthorhombic space group P212121 with a = 8.376(2), b = 16.231(5), c = 18.671(4). CuK ∝ intensity data were collected on a diffractometer in the ω ?2θ scan mode. The amount of 1699 out of 2354 reflections having I ≥ 3σ (F) were considered observed. The structure was solved by direct methods and refined by full-matrix least squares to a R factor of 0.054. The conformation of the guanine base about the glycosyl bond is syn (χ1 = ?54°) and that of cytosine is anti (χ2 = 156°). The 5′ and 2′ and ribose moieties show C2′-endo and C3-endo mixed puckering just like in A2′p5′A, A2′p5′C, A2′p5U, and dC3′p5′G. Charge neutralization in G2′p5′C is accomplished through protonation of the cytosine base. An important feature of G2′p5′C is the stacking of guanine on ribose 04′ of cytosine similar to that seen in other 2′–5′ dimers. G2′p5′C, unlike its 3′–5′ isomer, does not form a miniature double helix with the Watson-Crick base-pairing pattern. Comparison of G2′p5′C with A2′p5′C reveals that they are isostructural. A branched trinucleotide model for the msDNA-RNA junction has been postulated. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   

3.
Synthesis of a novel ribo-MMI dimer with 2′-OH and 2′-OMe in 5′- and 3′-nucleosides, respectively is presented. The synthesis was accomplished by reductive coupling of 3′-deoxy-3′-C-formyluridine and 2′-O-methyl-5′-O-methylaminouridine via a thioacetal as the key intermediate for the top part of the dimer. Incorporation of ribo- MMI dimers into oligonucleotides increased binding affinity for target RNA.  相似文献   

4.
Abstract

An efficient synthesis of 2′-O-substituted ribonucleosides, including 2′-O-TBDMS and 2′-O-TOM protected as well as 2′-O-Me and 2′-O-allyl derivatives is presented. Di-t-butylsilylene group was employed for simultaneous protection of 3′- and 5′- hydroxyl functions of nucleoside on the first step. Subsequent silylation or alkylation of free 2′-OH followed by introduction of suitable protection on the base moiety and removal of cyclic silyl protection gave target compounds in a high yield.  相似文献   

5.
Some 4′‐C‐ethynyl‐2′‐deoxy purine nucleosides showed the most potent anti‐HIV activity among the series of 4′‐C‐substituted 2′‐deoxynucleosides whose 4′‐C‐substituents were methyl, ethyl, ethynyl and so on. Our hypothesis is that the smaller the substituent at the C‐4′ position they have, the more acceptable biological activity they show. Thus, 4′‐C‐cyano‐2′‐deoxy purine nucleosides, whose substituent is smaller than the ethynyl group, will have more potent antiviral activity. To prove our hypothesis, we planned to develop an efficient synthesis of 4′‐C‐cyano‐2′‐deoxy purine nucleosides (4′‐CNdNs) and 4′‐C‐ethynyl‐2′‐deoxy purine nucleosides (4′‐EdNs). Consequently, we succeeded in developing an efficient synthesis of six 2′‐deoxy purine nucleosides bearing either a cyano or an ethynyl group at the C‐4′ position of the sugar moiety from 2′‐deoxyadenosine and 2,6‐diaminopurine 2′‐deoxyriboside. Unfortunately, 4′‐C‐cyano derivatives showed lower activity against HIV‐1, and two 4′‐C‐ethynyl derivatives suggested high toxicity in vivo.  相似文献   

6.
Abstract

(E)-5-(2-lodovinyl)-2′-fluoro-3′-0-(1-methyl-1,4-dihydropyridyl-3-carbonyl)-2′-deoxyuridine (11) was synthesized for future evaluation as a lipophilic, brain-selective, pyrimidine phosphorylase-resistant, antiviral agent for the treatment of Herpes simplex encephalitis (HSE). Treatment of (E)-5-(2-iodovinyl)-2′-fluoro-2′-deoxyuridine (6) with TBDMSCI in the presence of imidazole in DMF yielded the protected 5′-O-t-butyldimethylsilyl derivative (7). Subsequent reaction with nicotinoyl chloride hydrochloride in pyridine afforded (E)-5-(-2-iodovinyl)-2′-fluoro-3′-O-(3-pyridylcarbonyl)-5′-O-t-butyldimethylsily-2′-deoxyuridine (8). Deprotection of the silyl ether moiety of 8 with n-Bu4N+F? and quaternization of the resulting 3′-O-(3-pyridylcarbonyl) derivative 9 using iodomethane afforded the corresponding 1-methylpyridinium salt 10. The latter was reduced with sodium dithionite to yield (E)-5-(2-iodovinyl)-2′-fluoro-3′-O-(1-methyl-1,4-dihydropyridyl-3-carbonyl)-2′-deoxyuridine (11).  相似文献   

7.
Potential energy calculations were employed to examine the effect of ribose 2′-O-methylation on the conformation of GpC. Minimum energy conformations and allowed conformational regions were calculated for 2′MeGpC and Gp2′MeC. The two lowest energy conformations of 2′MeGpC and Gp2′MeC are similar to those of GpC itself. The helical RNA conformation (sugar pucker-C(3′)-endo, ω′ and ω,g?g?, bases-anti) is the global minimum, and a helix-reversing conformation with ω′, ω in the vicinity of 20°, 80° is next in energy. However, subtle differences between the three molecules are noted. When the substitution is on the 5′ ribose (Gp2′MeC), the energy of the helical conformation is less than that of GpC, due to favorable interactions of the added methyl group. When the substitution is at the 3′ ribose (2′MeGpC) these stabilizing interactions are outweighed by steric restrictions, and the helical conformation is of higher energy than for GpC. Furthermore, the statistical weight of the 2′MeGpC g? g? helical region is substantially less than the corresponding weight for Gp2′MeC. In addition, 2′MeGpC′s methoxy group is conformationally restricted to a narrow range centered at 76°. This group has a broadly allowed region between 50 and 175° in Gp2′MeC. These differences occur because the appended methyl group in 2′MeGpC is located in the interior of the helix cylinder, as it would be in polynucleotide, while it hangs unimpeded in Gp2′MeC. These findings suggest that 2′-O-methylation has both stabilizing and destabilizing influences on the helical conformation of RNA. For 2′MeGpC the destabilizing steric hindrance imposed by the nature of the guanine base dominates.  相似文献   

8.
Abstract

This paper describes general methods for the synthesis of N-phosphorylated ribonucleosides and oligonucleotides containing a 2′-O-phosphorylated or 2′-O-thiophosphorylated ribonucleoside. The NMR-based conformational analysis and computational molecular dynamics simulation of the 2′-O-phosphorylated ribonucleoside residue in such modified oligonucleotides suggested that the ribose residue existed preferentially in a C2′-endo conformation. It was also found that simple heating of 2′-O-phosphorylated oligonucleotides resulted in rapid dethiophosphorylation.  相似文献   

9.
Fully protected pA2′p5′A2′p5′A trimers 1a and 1b have been prepared as prodrug candidates for a short 2′‐5′ oligoadenylate, 2‐5A, and its 3′‐O‐Me analog, respectively. The kinetics of hog liver carboxyesterase (HLE)‐triggered deprotection in HEPES buffer (pH 7.5) at 37° has been studied. The deprotection of 1a turned out to be very slow, and 2‐5A never appeared in a fully deprotected form. By contrast, a considerable proportion of 1b was converted to the desired 2‐5A trimer, although partial removal of the 3′‐O‐[(acetyloxy)methyl] group prior to exposure of the adjacent phosphodiester linkage resulted in 2′,5′→3′,5′ phosphate migration and release of adenosine as side reactions.  相似文献   

10.
Abstract

New methods for the synthesis of 2′,3′-didehydro-2′,3′-dideoxy-2′ (and 3′)-methyl-5-methyluridines and 2′,3′-dideoxy-2′ (and 3′)-methylidene pyrimidine nucleosides have been developed from the corresponding 2′ (and 3′)-deoxy-2′ (and 3′)-methylidene pyrimidine nucleosides. Treatment of a 3′-deoxy-3′-methylidene-5-methyluridine derivative 8 with 1,1′-thiocarbonyldiimidazole gave the allylic rearranged 2′,3′-didehydro-2′,3′-dideoxy-3′-[(imidazol-1-yl)carbonylthiomethyl] derivative 24. On the other hand, reaction of 8 with methyloxalyl chloride afforded 2′-O-methyloxalyl ester 25. Radical deoxygenation of both 24 and 25 gave 26 exclusively. Palladium-catalyzed reduction of 2′,5′-di-O-acetyl-3′-deoxy-3′-methylidene-5-methyluridine (32) with triethylammonium formate as a hydride donor regioselectively afforded the 2′,3′-dideoxy-3′-methylidene derivative 35 and 2′,3′-didehydro-2′,3′-dideoxy-3′-methyl derivative 34 in a ratio of 95:5 in 78% yield. These reactions were used on the corresponding 2′-deoxy-2′-methylidene derivatives. An alternative synthesis of 2′,3′-dideoxy-2′-methylidene pyrimidine nucleosides (43, 52, and 54) was achieved from the corresponding 1-(3-deoxy-β-D-thero-pentofuranosyl)pyrimidines (44 and 45). The cytotoxicity against L1210 and KB cells and inhibitory activity of the pathogenicity of HIV-1 are also described  相似文献   

11.
Abstract

The antitumor mechanism of action of 2′-C-cyano-2′-deoxy-1-β-d-arabinofuranosylcytosine (CNDAC) has been examined. CNDAC was designed as a potentially DNA-self-strand-breaking nucleoside. It had potent antitumor effects against various solid tumors in vitro as well as in vivo. Using a chain-extension method with Vent (exo?) DNA polymerase and a short primer/template system, we found that 5′-triphosphate of CNDAC (CNDACTP) was incorporated into the primer at a site opposite a guanine residue in the template. After further chain-extension reaction of the primer containing CNDAC at the 3′-terminus, chain elongation was not observed. Therefore, CNDACTP appeared to act as a chain-terminator. Analyses of the structure of the 3′-terminus in the primer revealed 2′-C-cyano-2′,3′-didehydro-2′,3′-dideoxycytidine (ddCNC) together with CNDAC and 2′-C-cyano-2′-deoxy-1-β-d-ribofuranosylcytosine (CNDC). The existence of ddCNC in the 3′-end of the primer would be due to the self-strand-break by the nucleotide incorporated next to CNDAC. We also found that CNDAC was epimerized to CNDC in near-neutral to alkaline media. Therefore, CNDC found in the primer was epimerized after incorporation of CNDACTP into the primer. We also described the metabolism of CNDAC.  相似文献   

12.
An efficient enzymatic synthesis of 6-chloropurine-2′-deoxyriboside from the reaction of 6-chloropurine with 2′-deoxycytidine catalyzed by nucleoside-2′-deoxyribosyltransferase (E.C. 2.4.2.6) followed by chemical conversion into the 5′-dimethoxytrityl 3′-(2-cyanoethyl-N,N-diisopropylamino) phosphoramidite derivative is described. The phosphoramidite derivative was incorporated site-specifically into an oligonucleotide and used for the introduction of a tethered tetramethylrhodamine-cadaverine conjugate. The availability of an efficient route to 6-chloropurine-2′-deoxyriboside 5′-dimethoxytrityl 3′-(2-cyanoethyl-N,N-diisopropylamino)phosphoramidite enables the facile synthesis of oligonucleotides containing a range of functional groups tethered to deoxyadenosine residues.  相似文献   

13.
We report a four-step synthesis of 2′-deoxy-2-deuteroadenosine from 2′-deoxyadenosine in 38% overall yield. The more accessible 2′-deoxy-8-deuteroadenosine was also prepared and incorporated into DNA by automated solid phase synthesis (80% deuterium) using N 6-benzoyl-2′-deoxy-8-deuteroadenosine-3′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) in combination with acetyl-protected deoxycytidine and phenoxyacetyl-protected purine phosphoramidites.  相似文献   

14.
A comparative study has been made of the configurational effects on the conformational properties of α- and β-anomers of purine and pyrimidine nucleoside 3′,5′,-cyclic monophosphates and their 2′-arabino epimers. Correlation between orientation of the base and the 2′-hydroxyl group have been studied theoretically using the PCILO (Perturbative Configuration Interaction using Localized Orbitals) method. The effect of change in ribose puckering on the base-hydroxyl interaction has also been studied. The result show that steric repulsions and stabilizing effects of intramolecular hydrogen bonding between the base and the 2′-hydroxyl (OH) group are of major importance in determining configurations of α-anomers and 2′-arabino-β-epimers. For example, hydrogen bonding between the 2′-hydroxyl group and polar centers on the base ring is clearly implicated as a determinant of syn-anti preferences of the purine (adenine) or pyrimidine (uracil) bases in α-nucleoside 3′,5′-cyclic monophosphates. Moreover, barrier heights for interconversion between conformers are sensitive to ribose pucker and 2′-OH orientations. The result clearly show that a change in ribose-ring pucker plays an essential role in relieving repulsive interaction between the base and the 2′-hydroxyl group. Thus a C2′-exo-C3′-endo (2T3) pucker is favored for α-anomers in contrast with the C4′-exo-C3′-endo (4T3) from found in β-compounds.  相似文献   

15.
Abstract

Two representative S-cyclonucleosides, 8,5′-anhydro-2′, 3′-O-isopropylidene-8-mercaptoadenosine (3) and 8,2′-anhydro-3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)-8-mercaptoguanosine (8), were prepared in good yields by dropwise addition of one equivalent each of triphenylphosphine and DEAD in DMF into a mixture of 2′,3′-O-isopropylidene-8-mercaptoadenosine (2) or 3′,5′-O-(tetra-iso-propyldisiloxane-1,3-diyl)-8-mercaptoguanosine (7), respectively, in DMF. Treatment of compound 2 with two equivalents each of triphenylphosphine and DEAD in DMF afforded N-[8,5′-anhydro-2′,3′-O-isopropylidene-8-mercaptopurin-6-yl]triphenylphospha-λ5-azene (4) in 87% yield.  相似文献   

16.
Abstract

2-Bromoadenosine-substituted analogues of 2–5A, p5′A2′p-5′A2′p5′(br2A), p5′(br2A)2′p5′A2′p5′A, and p5′(br2A)2′p5′(br2A)2′p-S′(br2A), were prepared via a modification of a lead ion-catalyzed ligation reaction and were subsequently converted into the corresponding 5′-triphosphates. Both binding and activation of human recombinant RNase L by various 2-bromoadenosine-substituted 2–5A analogues were examined. Among the 2-bromoadenosine-substituted 2–5A analogues, the analogue with 2-bromoadenosine residing in the 2′-terminal position, p5′A2′p5′A2′p-5′(br2A), showed the strongest binding affinity and was as effective as 2–5A itself as an activator of RNase L. The CD spectrum of p5′A2′p-5′A2′p5′(br2A) was superimposable on that of p5′A2′p5′A2′p5′A, indicative of an anti orientation about the base-glycoside bonds as in naturally occurring 2–5A.  相似文献   

17.
18.
Abstract

Oligonucleotides with modifications at the carbohydrate 2′-position offer potential second-generation drug candidates1. ISIS 13312, a chimeric compound targeting CMV retinitis, has 2′-O-methoxyethyl2 (2′-MOE) modifications at the ends to offer enhanced binding affinity and nuclease resistance is an example of this trend. 2′-MOE modification offers high binding affinity and nuclease resistance presumably due to conformational constraints placed on the linkage by the oxygen-oxygen gauche effect3. On the other hand, 2′-O-aminopropyl modification (2′-AP) exhibits the highest nuclease resistance4, due to the presence of a cationic charge at the physiological pH. However, it lacks the binding affinity advantage of MOE due to the lack of oxygen-oxygen gauche effect. To optimize the antisense properties of both 2′-MOE and 2′-AP modifications, we have designed and constructed 2′-O-(aminooxyethyl) modification (2′-AOE)5 and 2′-O-(dimethylaminooxy ethyl) modification (2′-DMAOE) and synthesized oligomers having these modifications. 2′-DMAOE oligomers demonstrate higher binding affinity and nuclease resistance than 2′-MOE oligomers and stand out as promising candidates for future antisense oligonucleotide drug development.  相似文献   

19.
Proton magnetic resonance data have been obtained for 6-methyl-2′-deoxyuridine (dT*), its 3′- and 5′-monophosphates, and its 3′,5′-diphosphate, as well as for the corresponding thymine derivatives. The synthesis of the dideoxynucleoside monophosphates—d(TpT), d(T*pT), d(TpT*), and d(T*pT*)—was accomplished, and spectral data were obtained for these four dimers. The data show that the 6-methyluracil base prefers the syn conformation about the N-glycosyl bond at the monomer and dimer levels. The presence of the syn base leads to increases in the cis couplings of the sugar ring, J1′2″ and J2′3′, which indicate a trend towards eclipsing of the substituents on the C1′-C2′ and C2′-C3′ fragments. This trend is discussed in terms of changes in the pseudorotational parameters which describe the pucker of the ring. The syn base destabilizes the g+ conformer about the C4′-C5′ bond, leading to a preference for the t conformer in all dT* residues at the monomer and dimer levels. Preliminary work on the formation of cyclobutane-type photodimers in d(T*pT) and d(T*pT*) is discussed and presented as evidence for the capability of the syn 6-methyluracil base to form base-stacked complexes.  相似文献   

20.
Abstract

2′-5′ and 3′-5′ linked 2-aminoadenylyl-2-aminoadenosines [(2′-5′)n2Apn2A (1) and (3′-5′)n2Apn2A (2)] were synthesized by condensation of 5′-O-monomethoxytrityl-N 2 N 6-dibenzoyl-2-aminoadenosine and N 2,N 6,2′,3′-O-tetrabenzoyl-2-aminoadenosine 5′-phosphate using dicyclohexylcarbodiimide (DCC). The conformational properties of these dimers 1 and 2 were examined by UV, NMR and CD spectroscopy. The results reveal that the 2′-5′-isomer 1 takes a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′-isomer 2. Interactions of 1 and 2 with polyuridylic acid (Poly (U)) were also examined by Tm, mixing curves, UV and CD spectra. Both the dinucleoside isomers 1 and 2 formed a complex of 1 : 2 stoichiometry with poly(U), which was much more stable than that of the corresponding ApA isomer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号