首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the effect of sinusoidal 50 Hz magnetic field on the basal and human chorionic gonadotropin (hCG)-stimulated testosterone (T) production of 48-h mouse Leydig cell culture. The luteinizing hormone (LH) analog hCG was used to check the T response of the controls and to evaluate the possible effect of the applied magnetic field on the steroidogenic capacity of the exposed cells. Leydig cells were obtained from the testes of 35- to 45-g CFLP mice and isolated by mechanical dissociation without enzyme treatment. The cell cultures were exposed to sinusoidal 50 Hz 100 μT (root mean square) AC magnetic field during the entire time of a 48-h incubation. Testosterone content of the culture media was measured by radioimmunoassay. In cultures exposed to the magnetic field, a marked increase of basal T production was found (P < .05), compared with the unexposed controls, whereas no significant difference was seen between the exposed or unexposed cultures in the presence of maximally stimulating concentration of hCG. These findings demonstrate that sinusoidal 50 Hz 100 μT magnetic fields are able to stimulate the basal T production of primary mouse Leydig cell culture, leaving the steroidogenic responsiveness to hCG unaltered. Bioelectromagnetics 19:429–431, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
We recently reported that cephalic regeneration in the planarian Dugesia tigrina was significantly delayed in populations exposed continuously to combined parallel DC and AC magnetic fields. This effect was consistent with hypotheses suggesting an underlying resonance phenomenon. We report here, in a parallel series of investigations on the same model system, that the incidence of regeneration anomalies presenting as tumor-like protuberances also increases significantly (P < .001) in association with exposure to weak 60 Hz magnetic fields, with peak intensities ranging between 1.0 and 80.0 μT. These anomalies often culminate in the complete disaggregation of the organism. Similar to regeneration rate effects, the incidence of regeneration anomalies is specifically dependent upon the planaria possessing a fixed orientation with respect to the applied magnetic field vectors. However, unlike the regeneration rate effects, the AC magnetic field alone, in the absence of any measurable DC field, is capable of producing these anomalies. Moreover, the incidence of regeneration anomalies follows a clear dose-response relationship as a function of AC magnetic field intensity, with the threshold for induced electric field intensity estimated at 5 μV/m. The addition of either 51.1 or 78.4 μT DC magnetic fields, applied in parallel combination with the AC field, enhances the appearance of anomalies relative to the 60 Hz AC field alone, but only at certain AC field intensities. Thus, whereas our previous study of regeneration rate effects appeared to involve exclusively resonance interactions, the regeneration anomalies reported here appear to result primarily from Faraday induction coupling. These results together with those reported previously point to two distinct physiological effects produced in regenerating planaria by exposure to weak extremely-low-frequency (ELF) magnetic fields. They further suggest that the planarian, which has recently been identified elsewhere as an excellent system for use in teratogenic investigations involving chemical teratogens, might be used similarly in teratogenic investigations involving ELF magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

3.
4.
5.
Recent evidence indicates that factors produced by immune cells (cytokines) may play a role in ovarian function. To explore this possibility, we examined the effects of conditioned medium obtained from cultures of either unstimulated splenocytes (splenocyte-conditioned medium; SCM) or concanavalin A-stimulated splenocytes (CAS) on estrogen and progesterone production by porcine granulosa cells. Granulosa cells were obtained from small (less than 3 mm) or large (greater than 7 mm) follicles and treated with increasing doses of SCM or CAS in the presence or absence of pFSH (100 ng/ml) for 24 h at 37 degrees C. In granulosa cells obtained from small follicles it was found that both SCM and CAS evoked a dose-dependent increase in estrogen but not progesterone production. Estrogen production was no further enhanced by the presence of FSH. Additionally, SCM was able to augment FSH-stimulated progesterone production by these cells, whereas CAS had no effect. Identical treatment of granulosa cells obtained from large follicles demonstrated that both SCM and CAS caused dose-dependent increases in estrogen as well as progesterone production. In response to CAS, FSH augmented progesterone production but exerted a biphasic on estrogen production (inhibiting at lower doses while stimulating at higher doses). In contrast, SCM had no effect on FSH-stimulated estrogen production. Additional controls indicated that the above results could not be attributed to either concanavalin A or serum. Taken together, these findings suggest that cytokines can exert significant effects over granulosa cell steroidogenesis and further imply that these factors may play an important role in the differentiation and developmental regulation of granulosa cell function.  相似文献   

6.
The aim of this study is to examine the effect of lipopolysaccharide (LPS) on progesterone production during luteinization of granulosa and theca cells isolated from bovine large follicles. Granulosa and theca cells isolated from large follicles of bovine ovaries were exposed to LPS under appropriate hormone conditions in vitro. Progesterone (P4) production in theca cells, but not granulosa cells, was decreased by long‐term exposure of LPS. Long‐term exposure of LPS suppressed the gene expression of luteinizing hormone receptor in theca cells. Although long‐term exposure of LPS did not affect the expression of steroidogenic acute regulatory protein (StAR) and 3β‐hydroxy‐steroid dehydrogenase (3β‐HSD) genes, it did inhibit the protein expression of StAR and 3β‐HSD in theca cells. These findings suggest that theca cells, rather than granulosa cells, are susceptible to LPS during luteinization and that LPS inhibits P4 production by decreasing protein levels of StAR during luteinization of theca cells.  相似文献   

7.
A companion paper describes a predictive ion parametric resonance (IPR) model of magnetic field interactions with biological systems based on a selective relation between the ratio of the flux density of the static magnetic field to the AC magnetic field and the charge-to-mass ratio of ions of biological relevance. Previous studies demonstrated that nerve growth factor (NGF)-stimulated neurite outgrowth (NO) in PC-12 cells can be inhibited by exposure to magnetic fields as a function of either magnetic field flux density or AC magnetic field frequency. The present work examines whether the PC-12 cell response to magnetic fields is consistent with the quasiperiodic, resonance-based predictions of the IPR model. We tested changes in each of the experimentally controllable variables [flux densities of the parallel components of the AC magnetic field (Bac) and the static magnetic field (Bdc) and the frequency of the AC magnetic field] over a range of exposure conditions sufficient to determine whether the IPR model is applicable. A multiple-coil exposure system independently controlled each of these critical quantities. The perpendicular static magnetic field was controlled to less than 2 mG for all tests. The first set of tests examined the NO response in cells exposed to 45 Hz Bac from 77 to 468 mG(rms) at a Bdc of 366 mG. Next, we examined an off-resonance condition using 20 mG Bdc with a 45 Hz AC field across a range of Bac between 7.9 and 21 mG(rms). Finally, we changed the AC frequency to 25 Hz, with a corresponding change in Bdc to 203 mG (to tune for the same set of ions as in the first test) and a Bac range from 78 to 181 mG(rms). In all cases the observed responses were consistent with predictions of the IPR model. These experimental results are the first to support in detail the validity of the fundamental relationships embodied in the IPR model. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The purpose of this study was to determine if the granulosa cells of the small preovulatory follicles of the domestic hen are a target tissue for follicle-stimulating hormone (FSH). The third largest (F3), fourth largest (F4), and fifth largest (F5) follicles were removed from hens at 20, 12, 6 and 2 h before ovulation of the F1 follicle. Basal, FSH- and luteinizing hormone (LH)-stimulable adenylyl cyclase (AC) activities were measured in the granulosa cells. Isolated granulosa cells of the F5 follicle, obtained 20 h before ovulation of the F1 follicle, were incubated with ovine (o) or turkey (t) FSH and progesterone (P4) was assayed in the medium. Basal AC activity was similar for F5, F4 and F3 granulosa cells except for an increase (P less than 0.01) in F3 follicles removed 2 h before ovulation of the F1 follicle. The FSH-stimulable AC activity of F5, F4 and F3 granulosa cells was elevated over basal (P less than 0.01). The greatest responsiveness was seen in the F5 follicle and the least in the F3 follicle. LH-stimulable AC activity was absent in the F5 follicle but present in the F4 and F3 follicles with the greater responsiveness in the F3 follicle. Isolated F5 granulosa cells secreted significant amounts of P4 in response to oFSH and tFSH. The data indicate that: 1) FSH stimulates the AC system of granulosa cells of the smaller preovulatory follicles (F5 greater than F4 greater than F3) while LH stimulates the AC system of granulosa cells of the larger follicles (F3 greater than F4), and 2) FSH promotes P4 production by granulosa cells of F5 follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Experiments designed to evaluate the synergistic production of clastogenic effects by ionizing radiation and 60 Hz magnetic fields were performed using human lymphocytes from peripheral blood. Following exposure to ionizing radiation, cells were cultured in 60 Hz magnetic fields having field strengths up to 1.4 mT. Cells exposed to both ionizing radiation and 60 Hz magnetic fields demonstrated an enhanced frequency of near tetraploid chromosome complements, a feature not observed following exposure to only ionizing radiation. The results are discussed in the context of a multiple-stage model of cellular transformation, employing both initiating and promoting agents. © 1993 Wiley-Liss. Inc.  相似文献   

10.
Calcium influxes through the membrane of PC-12D cells were measured under exposure to DC biased AC magnetic fields in resonant conditions of the ion cyclotron and the ion parametric resonance hypotheses and compared with influxes in cells without exposure to the magnetic field. After cancellation of the geomagnetic field, the cells were exposed to the horizontal fields generated by a current sheet, a planar sheet of conductor which generated a satisfactorily homogeneous horizontal magnetic field on the stage of a microscope without hindering treatment of a cell under observation. At or near any resonant conditions, no change in calcium influx could be detected under standard patch clamp conditions.  相似文献   

11.
12.
Seeds of hornwort (Cryptotaenia japonica Hassk) were exposed to sinusoidally time-varying extremely low frequency (ELF) magnetic fields (AC fields) in combination with the local geomagnetic field (DC field). Exposure lasted 24 h/day for 16 days. Three directions of the AC magnetic fields were considered; the vertical (magnetic flux density B ACV, the directions parallel B ACparallel), and perpendicular B ACperpendicular to the direction of total geomagnetic field (magnetic flux density BG) in the geomagnetic plane (GP). Controls consisted of seeds exposed to zero AC magnetic fields in combination with the DC magnetic field. The B ACV in combination with BG effectively promoted the germination of hornwort seeds when applied at 750 microT (RMS) at 7 Hz or 500 microT (RMS) at 14 Hz from among the cases of individual frequencies f = 3.5, 7.0, 10.5, 14.0 Hz at 500 and 750 microT. The B ACparallel promoted the germination of hornwort seeds more effectively than the B ACperpendicular in combination with BG when 500 and 750 microT at 7 Hz were applied.  相似文献   

13.
14.
Cells were obtained from patients undergoing in vitro fertilization. They were cultured and those producing vascular endothelium growth factor (VEGF) were detected by flow cytometry; relative amounts of mRNA were detected by RT-PCR and measured by PCR Elisa after RT-PCR products were biotinylated. Most of the granulosa cells produced VEGF. This production was maintained over 5 days in culture without adding hCG. The two diffusible forms, VEGF 121 and 165, were the most abundant. VEGF 145, which is specific to the reproductive system, was less abundant. VEGF 189, which is not freely secreted, was not produced by granulosa cells; small amounts were only detected in preparations containing leukocytes. TNF-alpha decreased VEGF production; the effect of TNF-alpha was neutralized by 10 nM staurosporine. Thus, the VEGF in human preovulatory follicles is mostly in the granulosa cells. These cells are therefore a major source of VEGF at ovulation and may play a key role in physiological and pathological processes which involve changes in vascular permeability and/or angiogenesis. The data also suggest that TNF-alpha via protein kinase C modulates the production of VEGF.  相似文献   

15.
Rat tendon fibroblast (RTF) and rat bone marrow (RBM) osteoprogenitor cells were cultured and exposed to AC and/or DC magnetic fields in a triaxial Helmholtz coil in an incubator for up to 13 days. The AC fields were at 60 and 1000 Hz and up to 0.25 mT peak to peak, and the DC fields were up to 0.25 mT. At various combinations of field strengths and frequencies, AC and/or DC fields resulted in extensive detachment of preattached cells and prevented the normal attachment of cells not previously attached to substrates. In addition, the fields resulted in altered cell morphologies. When RTF and RBM cells were removed from the fields after several days of exposure, they partially reattached and assumed more normal morphologies. An additional set of experiments described in the Appendix corroborates these findings and also shows that low-frequency EMF also initiates apoptosis, i.e., programmed cell death, at the onset of cell detachment. Taken together, these results suggest that the electromagnetic fields result in significant alterations in cell metabolism and cytoskeleton structure. Further work is required to determine the relative effect of the electric and magnetic fields on these phenomena. The research has implications for understanding the role of fields in affecting bone healing in fracture nonunions, in cell detachment in cancer metastasis, and in the effect of EMF on organisms generally. Bioelectromagnetics 18:264–272, 1997. © Wiley-Liss, Inc.  相似文献   

16.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Investigations on the effects of applied magnetic fields on mechanosensitive (MS) ion channel activity in Escherichia coli reveal an enhancement of subconducting activity with field exposure. In nine of 10 experimental runs, more subconducting activity was observed during the application of a 1.35 millitesla (mT) DC magnetic field when compared to control periods before field application (p=.1). This is an indication that these weak fields may interfere with the function of MS channel subunits in this bacterium and may have implications for the interaction of applied magnetic fields with human MS ion channels.  相似文献   

18.
Prostaglandin production in vitro by theca and granulosa cells isolated from prepubertal pig ovaries was quantified in order to investigate the role of prostaglandins in intrafollicular function. Prepubertal gilts were slaughtered without treatment (O h, control) or treated with 1000 IU pregnant mare's serum gonadotropin (PMSG) and slaughtered at 36 or 72 h, or at 75 h following treatment with 500 IU of hCG at 72 h. Theca and granulosa cells were isolated from preovulatory follicles and cultured for 24 h alone or with follicle-stimulating hormone (FSH) or luteinizing hormone (LH). In vitro accumulation of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha) was measured by radioimmunoassay. On a per follicle basis theca produced more of each prostaglandin (approx. 10-fold) than granulosa at each stage of follicular development; production by each tissue type increased with development of the follicle, responding to administration of gonadotropin (PMSG) in vivo. Neither tissue type was generally responsive to further gonadotropin stimulation in vitro. However, production of PGE2 by granulosa cells was increased by addition of gonadotropin, particularly LH, in vitro, with the greatest response observed in tissue obtained at 36 and 72 h after PMSG. There were no functional correlates between prostaglandin production and steroidogenesis by either tissue type and we conclude that prostaglandins do not have an obligatory role in follicular steroidogenesis. However, these data provide additional circumstantial evidence for a role of PGE2 in granulosa cell luteinization, and possibly in ovulation. The data also indicate that prostaglandins derived from thecal tissue in relatively large quantities may play an important role in ovulation.  相似文献   

19.
20.
We have shown that 50 Hz sinusoidal magnetic fields within the 5-10 micro Tesla (μT) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC-12 cells. Here we report on the frequency dependence of this response over the 15-70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO2 incubator at 37 °C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 μT rms. The flux density of the ambient DC magnetic field was 37 μT vertical and 19 μT horizontal. The assay consisted of counting over 100 cells in the central portion (radius ≤0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35-70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号