首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine D4 receptors mediate a wide range of neuronal signal transduction cascades. Malfunctions of these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders, and their modification underlies the actions of many psychotropic drugs. Postmortem neuropathological and genetic studies provide inconclusive associations between D4 receptors and schizophrenia. Clinical trials of partially selective lead D4 antagonists have proved them to be ineffective against psychotic symptoms in patients diagnosed with schizophrenia. However, associations are emerging between D4 receptors and other neuropsychiatric disorders, including attention-deficit hyperactivity disorder as well as specific personality traits such as novelty seeking. Preclinical studies indicate that D4 receptors play a pivotal role in the cellular mechanisms of hyperactivity, impulsivity, and working memory. Accordingly, D4 receptors have broader implications for human illnesses than has been suggested by early focus on psychotic illness as a clinical target, and selective D4 agents may yield clinically useful drugs for several neuropsychiatric disorders that require improved treatments.  相似文献   

2.
Dopamine-mediated neurotransmission plays an important role in relevant psychiatric and neurological disorders. Nowadays, there is an enormous interest in the development of new drugs acting at the dopamine receptors (DR) as potential new targets for the treatment of schizophrenia or Parkinson’s disease. Previous studies have revealed that isoquinoline compounds such as tetrahydroisoquinolines (THIQs) can behave as selective D2 dopaminergic alkaloids. In the present study we have synthesized five aporphine compounds and five phenanthrene alkaloids and evaluated their potential dopaminergic activity. Binding studies on rat striatal membranes were used to evaluate their affinity and selectivity towards D1 and D2 DR. Phenanthrene type alkaloids, in particular the 3,4-dihydroxy- and 3,4-methylenedioxy derivatives, displayed high selectivity towards D2 DR. Therefore, they are potential candidates to be used in the treatment of schizophrenia (antagonists) or Parkinson’s disease (agonists) due to their scarce D1 DR-associated side effects.  相似文献   

3.
The disrupted‐in‐schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D2/3Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D2 receptor (D2R) that inhibits agonist‐induced D2R internalisation. Moreover, animal studies have found large striatal increases in the proportion of D2R receptors in a high affinity state (D2highR) in DISC1 rodent models. Here, we investigated the relationship between the three most common polymorphisms altering the amino‐acid sequence of the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) and striatal D2/3R availability in 41 healthy human volunteers, using [11C]‐(+)‐PHNO positron emission tomography. We found no association between DISC1 polymorphisms and D2/3R availability in the striatum and D2R availability in the caudate and putamen. Therefore, despite a direct interaction between DISC1 and the D2R, none of its main functional polymorphisms impact striatal D2/3R binding potential, suggesting DISC1 variants act through other mechanisms.  相似文献   

4.

[Purpose]

Attention-deficit/hyperactivity disorder (ADHD) is a heritable, chronic, neurobehavioral disorder that is characterized by hyperactivity, inattention, and impulsivity. It is commonly believed that the symptoms of ADHD are closely associated with hypo-function of the dopamine system. Dopamine D2 receptor activation decreases the excitability of dopamine neurons, as well as the release of dopamine. Physical exercise is known to improve structural and functional impairments in neuropsychiatric disorders. We investigated the therapeutic effect of exercise on ADHD.

[Methods]

Open field task and elevated-plus maze task were used in the evaluation of hyperactivity and impulsivity, respectively. Dopamine D2 receptor expression in the substantia nigra and striatum were evaluated by western blotting.

[Results]

The present results indicated that ADHD rats showed hyperactivity and impulsivity. Dopamine D2 receptor expression in the substantia nigra and striatum were increased in ADHD rats. Exercise alleviated hyperactivity and impulsivity in ADHD rats. Furthermore, dopamine D2 receptor expression in ADHD rats was also decreased by exercise.

[Conclusion]

We thus showed that exercise effectively alleviates ADHD-induced symptoms through enhancing dopamine D2 expression in the brain.  相似文献   

5.
Prenatal stress greatly influences the ability of an individual to manage stressful events in adulthood. Such vulnerability may result from abnormalities in the development and integration of forebrain dopaminergic and glutamatergic projections during the prenatal period. In this study, we assessed the effects of prenatal stress on the expression of selective dopamine and glutamate receptor subtypes in the adult offsprings of rats subjected to repeated restraint stress during the last week of pregnancy. Dopamine D2-like receptors increased in dorsal frontal cortex (DFC), medial prefrontal cortex (MPC), hippocampal CA1 region and core region of nucleus accumbens (NAc) of prenatally stressed rats compared to control subjects. Glutamate NMDA receptors increased in MPC, DFC, hippocampal CA1, medial caudate-putamen, as well as in shell and core regions of NAc. Group III metabotropic glutamate receptors increased in MPC and DFC of prenatally stressed rats, but remained unchanged in all other regions examined. These results indicate that stress suffered during the gestational period has long lasting effects that extend into the adulthood of prenatally stressed offsprings. Changes in dopamine and glutamate receptor subtype levels in different forebrain regions of adult rats suggest that the development and formation of the corticostriatal and corticolimbic pathways may be permanently altered as a result of stress suffered prenatally. Maldevelopment of these pathways may provide a neurobiological substrate for the development of schizophrenia and other idiopathic psychotic disorders.  相似文献   

6.
Compounds that target D2-like dopamine receptors (DRs) are currently used as therapeutics for several neuropsychiatric disorders including schizophrenia (antagonists) and Parkinson's disease (agonists). However, as the D2R and D3R subtypes are highly homologous, creating compounds with sufficient subtype-selectivity as well as drug-like properties for therapeutic use has proved challenging. This review summarizes the progress that has been made in developing D2R- or D3R-selective antagonists and agonists, and also describes the experimental conditions that need to be considered when determining the selectivity of a given compound, as apparent selectivity can vary widely depending on assay conditions. Future advances in this field may take advantage of currently available structural data to target alternative secondary binding sites through creating bivalent or bitopic chemical structures. Alternatively, the use of high-throughput screening techniques to identify novel scaffolds that might bind to the D2R or D3R in areas other than the highly conserved orthosteric site, such as allosteric sites, followed by iterative medicinal chemistry will likely lead to exceptionally selective compounds in the future. More selective compounds will provide a better understanding of the normal and pathological functioning of each receptor subtype, as well as offer the potential for improved therapeutics.  相似文献   

7.
Antipsychotic drugs are divided into two groups: typical and atypical. Recent clinical studies show atypical antipsychotics have advantages over typical antipsychotics in a wide variety of neuropsychiatric conditions, in terms of greater efficacy for positive and negative symptoms, beneficial effects on cognitive functioning, and fewer extra pyramidal side effects in treating schizophrenia. As such, atypical antipsychotics may be effective in the treatment of depressive symptoms associated with psychotic and mood disorders, posttraumatic stress disorder and psychosis in Alzheimer disease. In this paper, we describe the effects and potential neurochemical mechanisms of action of atypical antipsychotics in several animal models showing memory impairments and/or non-cognitive behavioral changes. The data provide new insights into the mechanisms of action of atypical antipsychotics that may broaden their clinical applications.Key words: atypical antipsychotics, neuroprotective effect, memory, anxiety-like behavior, neurotoxicity  相似文献   

8.
The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G‐protein‐coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low‐molecular‐weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven‐transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co‐stored and co‐released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become ‘active’ when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of both central and peripheral nervous system disorders. Both, receptor subtype‐selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK‐1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5‐HT2C or dopamine D1, D2 receptors. At long last, structure‐based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR? ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low‐molecular‐weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β‐ and γ‐peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half‐life limited to 2–3 min. This last point will be illustrated more specifically, as we have had a long‐standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.  相似文献   

9.
The prefrontal cortex (PFC), a key brain region for cognitive and emotional processes, is highly regulated by dopaminergic inputs. The dopamine D4 receptor, which is enriched in PFC, has been implicated in mental disorders, such as attention deficit-hyperactivity disorder and schizophrenia. Recently we have found homeostatic regulation of AMPA receptor-mediated synaptic transmission in PFC pyramidal neurons by the D4 receptor, providing a potential mechanism for D4 in stabilizing cortical excitability. Because stress is tightly linked to adaptive and maladaptive changes associated with mental health and disorders, we examined the synaptic actions of D4 in stressed rats. We found that neural excitability was elevated by acute stress and dampened by repeated stress. D4 activation produced a potent reduction of excitatory transmission in acutely stressed animals and a marked increase of excitatory transmission in repeatedly stressed animals. These effects of D4 targeted GluA2-lacking AMPA receptors and relied on the bi-directional regulation of calcium/calmodulin kinase II activity. The restoration of PFC glutamatergic transmission in stress conditions may enable D4 receptors to serve as a synaptic stabilizer in normal and pathological conditions.  相似文献   

10.
Antipsychotic drugs are divided into two groups: typical and atypical. Recent clinical studies show atypical antipsychotics have advantages over typical antipsychotics in a wide variety of neuropsychiatric conditions, in terms of greater efficacy for positive and negative symptoms, beneficial effects on cognitive functioning, and fewer extra pyramidal side effects in treating schizophrenia. As such, atypical antipsychotics may be effective in the treatment of depressive symptoms associated with psychotic and mood disorders, posttraumatic stress disorder, and psychosis in Alzheimer’s disease. In this paper, we describe the effects and potential neurochemical mechanisms of action of atypical antipsychotics in several animal models showing memory impairments and/or non-cognitive behavioral changes. The data provide new insights into the mechanisms of action of atypical antipsychotics that may broaden their clinical applications.  相似文献   

11.
The D2 dopamine receptor is an important therapeutic target for the treatment of psychotic, agitated, and abnormal behavioral states. To better understand the specific interactions of subtype‐selective ligands with dopamine receptor subtypes, seven ligands with high selectivity (>120‐fold) for the D4 subtype of dopamine receptor were tested on wild‐type and mutant D2 receptors. Five of the selective ligands were observed to have 21‐fold to 293‐fold increases in D2 receptor affinity when three non‐conserved amino acids in TM2 and TM3 were mutated to the corresponding D4 amino acids. The two ligands with the greatest improvement in affinity for the D2 mutant receptor [i.e., 3‐{[4‐(4‐iodophenyl) piperazin‐1‐yl]methyl}‐1H‐pyrrolo[2,3‐b]pyridine (L‐750,667) and 1‐[4‐iodobenzyl]‐4‐[N‐(3‐isopropoxy‐2‐pyridinyl)‐N‐methyl]‐aminopiperidine (RBI‐257)] were investigated in functional assays. Consistent with their higher affinity for the mutant than for the wild‐type receptor, concentrations of L‐750,667 or RBI‐257 that produced large reductions in the potency of quinpirole’s functional response in the mutant did not significantly reduce quinpirole’s functional response in the wild‐type D2 receptor. In contrast to RBI‐257 which is an antagonist at all receptors, L‐750,667 is a partial agonist at the wild‐type D2 but an antagonist at both the mutant D2 and wild‐type D4 receptors. Our study demonstrates for the first time that the TM2/3 microdomain of the D2 dopamine receptor not only regulates the selective affinity of ligands, but in selected cases can also regulate their function. Utilizing a new docking technique that incorporates receptor backbone flexibility, the three non‐conserved amino acids that encompass the TM2/3 microdomain were found to account in large part for the differences in intermolecular steric contacts between the ligands and receptors. Consistent with the experimental data, this model illustrates the interactions between a variety of subtype‐selective ligands and the wild‐type D2, mutant D2, or wild‐type D4 receptors.  相似文献   

12.
The discovery of new drugs for the treatment of neurodegenerative disorders, such as Parkinson's disease, has become an attractive field of research. Due to the regulation of D 2 receptor activity by A 2 A adenosine receptor, potent and selective ligands of A 2 A subtype could be useful tools to study neurodegenerative disorders. A series of 2,8-disubstituted-9-ethyladenine derivatives was synthesized and tested in binding affinity assay at human adenosine receptors. New compounds showed good affinity and selectivity at A 2 A receptor versus the other subtypes. The introduction of a bromine atom in 8-position increased the affinity of these compounds, leading to ligands with K i in the nanomolar range.  相似文献   

13.
Many neuropsychiatric disorders exhibit differences in prevalence, age of onset, symptoms or course of illness between males and females. For the most part, the origins of these differences are not well understood. In this article, we provide an overview of sex differences in psychiatric disorders including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety, depression, alcohol and substance abuse, schizophrenia, eating disorders and risk of suicide. We discuss both genetic and nongenetic mechanisms that have been hypothesized to underlie these differences, including ascertainment bias, environmental stressors, X‐ or Y‐linked risk loci, and differential liability thresholds in males and females. We then review the use of twin, family and genome‐wide association approaches to study potential genetic mechanisms of sex differences and the extent to which these designs have been employed in studies of psychiatric disorders. We describe the utility of genetic epidemiologic study designs, including classical twin and family studies, large‐scale studies of population registries, derived recurrence risks, and molecular genetic analyses of genome‐wide variation that may enhance our understanding sex differences in neuropsychiatric disorders.  相似文献   

14.
Agonist potency at some neurotransmitter receptors has been shown to be regulated by transmembrane voltage, a mechanism which has been suggested to play a crucial role in the regulation of neurotransmitter release by autoreceptors and in synaptic plasticity. We have recently described the voltage-sensitivity of the dopamine D2L receptor and we now extend our studies to include the other members of the D2-like receptor subfamily; the D2S, D3, and D4 dopamine receptors. Electrophysiological recordings were performed on Xenopus oocytes coexpressing human dopamine D2S, D3, or D4 receptors with G protein-coupled potassium (GIRK) channels. Comparison of concentration-response relationships at −80 mV and at 0 mV for dopamine-mediated GIRK activation revealed significant rightward shifts for both D2S and D4 upon depolarization. In contrast, the concentration-response relationships for D3-mediated GIRK activation were not appreciably different at the two voltages. Our findings provide new insight into the functional differences of these closely related receptors.  相似文献   

15.
The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4 = 0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4 = 3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted.  相似文献   

16.
A substantial body of evidence shows the capacity of the dopamine D3 receptor to couple functionally to G proteins when expressed in an appropriate milieu in heterologous expression systems. In these systems, activation of D3 receptors inhibits adenylate cyclase, modulates ion flow through potassium and calcium channels, and activates kinases, most notably mitogen-activated protein kinase. Coupling to Gi/Go is implicated in many of these effects, but other G proteins may contribute. Studies with chimeric receptors implicate the third intracellular loop in the mediation of agonist-induced signal transduction. Finally, D3-preferring drugs modulate expression of c-fos in neuronal cultures and brain. Signaling mechanisms of the D3 receptor in brain, however, remain to be definitively determined.  相似文献   

17.

Objective

Non-clinical psychotic experiences are common and distressing. It has been hypothesized that early life vitamin D deficiency may be a risk factor for psychosis-related outcomes, but it is not known if circulating concentrations of 25-hydroxyvitamin D (25(OH)D) during childhood are associated with psychosis-related outcomes or whether the two different forms of 25(OH)D, (25(OH)D3 and 25(OH)D2, have similar associations with psychosis-related outcomes.

Methods

We investigated the association between serum 25(OH)D3 and 25(OH)D2 concentrations and psychotic experiences in a prospective birth cohort study. Serum 25(OH)D3 and 25(OH)D2 concentrations were measured at mean age 9.8 years and psychotic experiences assessed at mean age 12.8 years by a psychologist (N = 3182).

Results

Higher 25(OH)D3 concentrations were associated with lower risk of definite psychotic experiences (adjusted odds ratio: OR (95% confidence interval: CI) 0.85 (0.75–0.95)). Higher concentrations of 25(OH)D2 were associated with higher risk of suspected and definite psychotic experiences (adjusted odds ratio: OR (95% confidence interval: CI) 1.26 (1.11, 1.43)). Higher 25(OD)D2 concentrations were also weakly associated with definite psychotic experiences (adjusted OR (95% CI) 1.17 (0.96, 1.43), though with wide confidence intervals including the null value.

Conclusions

Our findings of an inverse association of 25(OH)D3 with definite psychotic experiences is consistent with the hypothesis that vitamin D may protect against psychosis-related outcomes.  相似文献   

18.
The 5-HTergic system and particularly 5-HT2A receptors have been involved in prefrontal cognitive functions, but the underlying mechanisms by which the serotonin (5-HT) system modulates these processes are still unclear. In this work, the effects of prefrontal 5-HTergic denervation on the density and expression levels of 5-HT2A receptors were evaluated by immunohistochemical and molecular biology studies in the prefrontal cortex (PFC). The [3H]-Ketanserin binding study revealed an increase in the Bmax, along with no change in the binding affinity (KD) for 5-HT2A receptors. The increase in PFC of 5-HT2A receptor density in response to denervation was accompanied by increase in 5-HT2A receptor mRNA and protein levels. This increase in the number of 5-HT2A receptors may be interpreted as an adaptive plastic change, i.e., hypersensitivity; resulting from the selective pharmacological lesion of the raphe-proceeding 5-HTergic fibers to the PFC. Based on previous evidence, this could be strongly related to the abnormal expression of short-term memory.  相似文献   

19.
Brain GABAA/benzodiazepine receptors are highly heterogeneous. This heterogeneity is largely derived from the existence of many pentameric combinations of at least 16 different subunits that are differentially expressed in various brain regions and cell types. This molecular heterogeneity leads to binding differences for various ligands, such as GABA agonists and antagonists, benzodiazepine agonists, antagonists, and inverse agonists, steroids, barbiturates, ethanol, and Cl channel blockers. Different subunit composition also leads to heterogeneity in the properties of the Cl channel (such as conductance and open time); the allosteric interactions among subunits; and signal transduction efficacy between ligand binding and Cl channel opening. The study of recombinant receptors expressed in heterologous systems has been very useful for understanding the functional roles of the different GABAA receptor subunits and the relationships between subunit composition, ligand binding, and Cl channel properties. Nevertheless, little is known about the complete subunit composition of the native GABAA receptors expressed in various brain regions and cell types. Several laboratories, including ours, are using subunit-specific antibodies for dissecting the heterogeneity and subunit composition of native (not reconstituted) brain GABAA receptors and for revealing the cellular and subcellular distribution of these subunits in the nervous system. These studies are also aimed at understanding the ligand-binding, transduction mechanisms, and channel properties of the various brain GABAA receptors in relation to synaptic mechanisms and brain function. These studies could be relevant for the discovery and design of new drugs that are selective for some GABAA receptors and that have fewer side effects.  相似文献   

20.
Dopamine D2 and D4 receptors partially codistribute in the dorsal striatum and appear to play a fundamental role in complex behaviors and motor function. The discovery of D2R–D4.xR (D4.2R, D4.4R or D4.7R) heteromers has been made in cellular models using co-immunoprecipitation, in situ Proximity Ligation Assays and BRET1 techniques with the D2R and D4.7R receptors being the least effective in forming heteromers. Allosteric receptor–receptor interactions in D2R–D4.2R and D2R–D4.4 R heteromers were observed using the MAPK assays indicating the existence of an enhancing allosteric receptor–receptor interaction in the corresponding heteromers between the two orthosteric binding sites. The bioinformatic predictions suggest the existence of a basic set of common triplets (ALQ and LRA) in the two participating receptors that may contribute to the receptor–receptor interaction interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号