首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation of hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch–Nyhan syndrome, which is characterized by hyperuricemia, severe motor disability, and self-injurious behavior, or HPRT-related gout with hyperuricemia. Four mutations were detected in two Lesch–Nyhan families and two families with partial deficiency since our last report. A new mutation of G to TT (c.456delGinsTT) resulting in a frameshift (p.Q152Hfs*3) in exon 3 has been identified in one Lesch–Nyhan family. In the other Lesch–Nyhan family, a new point mutation in intron 7 (c.532 + 5G > T) causing splicing error (exon 7 excluded, p.L163Cfs*4) was detected. In the two partial deficiency cases with hyperuricemia, two missense mutations of p.D20V (c.59A > T) and p.H60R (c.179A >G) were found. An increase of erythrocyte PRPP concentration was observed in the respective phenotypes and seems to be correlated with disease severity.  相似文献   

2.
Inherited mutation of the purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch–Nyhan syndrome (LNS) or Lesch–Nyhan variants (LNVs). We report three novel independent mutations in the coding region of HPRT gene: exon 3: c.141delA, p.D47fs53X; exon 5: c.400G>A, p.E134K; exon 7: c.499A>G, p.R167G from three LNS affected male patients.  相似文献   

3.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch-Nyhan syndrome or HPRT-related gout. We have identified a number of HPRT mutations in patients manifesting different clinical phenotypes, by analyzing all nine exons of the HPRT gene (HPRT1) from genomic DNA and reverse transcribed mRNA using the PCR technique coupled with direct sequencing. Recently, we detected two novel mutations: a single nucleotide substitution (430C > T) resulting in a nonsense mutation Q144X, and a deletion of HPRT1 exon 1 expressing no mRNA of HPRT. Furthermore, we summarized the spectrum of 56 Japanese HPRT mutations.  相似文献   

4.
We have measured hypoxanthine effect on cAMP levels in PBL in basal conditions (no agonist), and with the addition of 2‐(p‐ [2‐carboxyethyl] phenylethylamino)‐5′‐N‐ethylcarboxamidoadenosine (CGS‐21680, a specific A2 receptor agonist). We have found that hypoxanthine, at 25 µM and 50 µM concentrations, increases cAMP levels in PBL in basal and A2 agonist stimulated conditions.  相似文献   

5.
Hypoxanthine phosphoribosyltranferase (HPRT) deficiency is an X-linked disorder of purine salvage that ranges phenotypically from hyperuricaemia to Lesch–Nyhan Syndrome. Molecular testing is necessary to identify female carriers within families as a prelude to prenatal diagnosis. During the period 1999–2010 the Purine Research Laboratory studied 106 patients from 68 different families. Genomic sequencing revealed mutations in 88% of these families, 24 of which were novel. In eight patients, exon sequencing was not informative. Copy-DNA analysis in one patient revealed an insertion derived from a deep intronic sequence with a genomic mutation flanking this region, resulting in the creation of a false exon. Carrier testing was performed in 21 mothers of affected patients, out of these, 81% (17) were found to be carriers of the disease-associated mutation. Our results confirm the extraordinary variety and complexity of mutations in HPRT deficiency. A combination of genomic and cDNA sequencing may be necessary to define mutations.  相似文献   

6.
Allopurinol is used widely for the treatment of purine disorders such as gout, but efficacy and safety of allopurinol has not been analyzed systematically in an extensive series of patients with HPRT deficiency. From 1984 to 2004 we have diagnosed 30 patients with HPRT deficiency. Eighteen patients (12 with Lesch-Nyhan syndrome or complete HPRT deficiency, and 6 with partial HPRT deficiency) were treated with allopurinol (mean dose, 6.44 mg/Kg of weight per day) and followed-up for at least 12 months (mean follow-up 7,6 years per patient). Mean age at diagnosis was 7 years (range, 5 months to 35 years). Treatment with allopurinol was associated to a mean reduction of serum urate concentration of 50%, and was normalized in all patients. Mean urinary uric acid excretion was reduced by 75% from baseline values, and uric acid to creatinine ratio was close or under 1.0 in all patients. In contrast, hypoxanthine and xanthine urinary excretion rates increased by a mean of 6 and 10 times, respectively, compared to baseline levels. These modifications were similar in patients with complete or partial HPRT deficiency. In 2 patients xanthine stones were documented despite allopurinol dose adjustments to prevent markedly increased oxypurine excretion rates. Neurological manifestations did not appear to be influenced by allopurinol therapy. Allopurinol is a very efficacy and fairly safety drug for the treatment of uric acid overproduction in patients with complete and partial HPRT deficiency. Allopurinol was associated with xanthine lithiasis.  相似文献   

7.
We postulated that increased levels of hypoxanthine, a main characteristic of hypoxanthine phosphoribosyltransferase (HPRT) deficiency, may influence adenosine function which could be related to some of the neurological features of the Lesch-Nyhan syndrome. We have examined the effect of hypoxanthine on different adenosine transporters in peripheral blood lymphocytes from control subjects. Increased hypoxanthine concentrations (25 μM) significantly decreased adenosine transport. The equilibrative adenosine transporters (79.6% of the adenosine transport), both NBTI sensitive and NBTI insensitive, were affected significantly. In contrast, the concentrative adenosine transporters were not influenced by hypoxanthine. These results supports the hypothesis that increased hypoxanthine levels influence equilibrative (predominantly NBTI-insensitive type) adenosine transporters.  相似文献   

8.
Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.  相似文献   

9.
Mutations in the gene encoding hypoxanthine‐guanine phosphoribosyltransferase (HPRT) cause Lesch–Nyhan disease, which is characterized by hyperuricemia, severe motor disability, and self‐injurious behavior. Mutations in the same gene also cause less severe clinical phenotypes with only some portions of the full syndrome. A large database of 271 mutations associated with both full and partial clinical phenotypes was recently compiled. Since the original database was assembled, 31 additional mutations have been identified, bringing the new total to 302. The results demonstrate a very heterogeneous collection of mutations for both LND and its partial syndromes. The differences between LND and the partial phenotypes cannot be explained by differences in the locations of mutations, but the partial phenotypes are more likely to have mutations predicted to allow some residual enzyme function. The reasons for some apparent exceptions to this proposal are addressed.  相似文献   

10.
The crystal structure of human HPRT reveals the involvement of E196 side chain at the A-B dimer interface. Interference by valine substitution at this position (E196V), as identified in patients with Lesch-Nyhan disease, nearly abolishes enzymatic activity. Kinetic analysis of the active mutants (E196A, E196D, E196Q, and E196R) suggests that interaction between K68 and E196 side chains contributes to stabilization of cis-configuration during the catalytic cycle. The study also provides further insight into the role of A-B dimer interactions relating to K68 in the regulation of cis-trans isomerization that potentially governs the rate-limiting steps in the HPRT reaction.  相似文献   

11.
The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) cause the severe neurodevelopmental Lesch Nyhan Disease (LND) are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA) and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS) cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA) multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer''s and Huntington''s disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.  相似文献   

12.
A novel point mutation (I137T) was identified in the hypoxanthine‐guanine phosphoribosyltransferase (HPRT) encoding gene, in a patient with partial deficiency of the enzyme. The mutation, ATT to ACT (substitution of isoleucine to threonine), occurred at codon 137, which is within the region encoding the binding site for 5‐phosphoribosyl‐1‐pyrophosphate (PRPP). The mutation caused decreased affinity for PRPP, manifested clinically as a Lesch–Nyhan variant (excessive purine production and delayed acquisition of language skills). The partial HPRT deficiency could be detected only by measuring HPRT activity in intact fibroblasts (uptake of hypoxanthine into nucleotides).  相似文献   

13.
Mutation of hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch-Nyhan syndrome, which is characterized by hyperuricemia, severe motor disability, and self-injurious behavior, or HPRT-related gout (Kelley-Seegmiller syndrome). The marked heterogeneity of HPRT deficiency is well known, with more than 300 mutations at the HPRT gene locus having been reported (deletions, insertions, duplications, abnormal splicing, and point mutations at different sites of the coding region from exons 1 to 9). We have identified mutations in Asian families with patients manifesting different clinical phenotypes, including rare cases of female subjects, by analyzing all nine exons of the HPRT gene (HPRT1) from genomic DNA and reverse-transcribed mRNA using the polymerase chain reaction technique coupled with direct sequencing. We developed suitable methods to detect the mutations identified from respective families with HPRT deficiency. Then, prenatal genetic diagnoses in HPRT-deficient families were carried out using both mRNA and genomic DNA from chorionic villi or amniotic fluid cells. As shown here in the heterogeneity of HPRT mutations, the spectrum of 70 mutations identified in the Asian population fits the four main conclusions that emerged previously from worldwide analysis.  相似文献   

14.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch-Nyhan syndrome or HPRT-related gout. We have identified 34 mutations in 28 Japanese, 7 Korean, and 1 Indian families with the patients manifesting different clinical phenotypes, including two rare cases in female subjects, by the analysis of all nine exons of HPRT from the genomic DNA and reverse transcribed mRNA using PCR technique coupled with direct sequencing.  相似文献   

15.
Lesch-Nyhan syndrome (LNS) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report a novel mutation which led to HGprt-related neurological dysfunction (HND) in two brothers from the same family with a missense mutation in exon 6 of the coding region of the HPRT1 gene: c.437T>C, p.L146S. Molecular diagnosis discloses the genetic heterogeneity of the HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.  相似文献   

16.
 中国仓鼠卵巢细胞(CHO-K1)经N-甲基-N'-硝基-N-亚硝基胍(MNNG)诱变和6-巯基鸟嘌呤(6-TG)选择,得到稳定的次黄嘌呤磷酸核糖转移酶(HPRT)缺陷细胞株,酶活性仅为野生型的6.5%。用磷酸钙共沉淀法和电脉冲法向HPRT-细胞转移人宫颈癌细胞(HeLaS_3)基因组DNA,纠正了CHO细胞的HPRT缺陷。酶活性提高了6.9倍,达到野生型的45%。用Alu序列探针进行分子杂交,证实经过基因转移并连续传代15次以上的受体细胞中含人DNA序列。表明人的有关基因已稳定地整合到CHO细胞的染色体中。  相似文献   

17.
Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1.  相似文献   

18.
Mucopolysaccharidosis type II (MPS II) is a rare X-linked disorder caused by alterations in the iduronate-2-sulfatase (IDS) gene. In this study, IDS activity in peripheral mononuclear blood monocytes (PMBCs) was measured with a fluorimetric enzyme assay. Urinary glycosaminoglycans (GAGs) were quantified using a colorimetric assay. All IDS exons and intronic flanks were bidirectionally sequenced. A total of 15 mutations (all exonic region) were found in 17 MPS II patients. In this cohort of MPS II patients, all alterations in the IDS gene were caused by point nucleotide substitutions or small deletions. Mutations p.Arg88His and p.Arg172* occurred twice. All mu- tations were inherited except for p.Gly489Alafs*7, a germline mutation. We found four new mutations (p.Ser142Phe, p.Arg233Gly, p.Glu430*, and p.Ile360Tyrfs*31). In Epstein-Barr virus (EBV)-immortalized PMBCs derived from the MPS II patients, no IDS protein was detected in case of the p.Ser142Phe and p.Ile360Tyrfs*31 mutants. For p.Arg233Gly and p.Glu430*, we observed a residual expression of IDS. The p.Arg233Gly and p.Glu430* mutants had a residuary enzymatic activity that was lowered by 14.3 and 76-fold, respectively, compared with healthy controls. This observation may help explain the mild disease phenotype in MPS II patients who had these two mutations whereas the p.Ser142Phe and p.Ile360Tyrfs*31 mutations caused the severe disease manifestation.  相似文献   

19.
The T-cell cloning assay, which enables the enumeration and molecular analysis of 6-thioguanine resistant (HPRT-negative) mutant T-cells, has been extensively used for studying human somatic gene mutation in vivo. However, large inter-laboratory variations in the HPRT mutant frequency (MF) call for further investigation of inter-laboratory differences in the experimental methodology, and development of an optimal but easy uniform cloning protocol. As part of the EU Concerted Action on HPRT Mutation (EUCAHM), we have carried out two Ring tests for the T-cell cloning assay. For each test, duplicate and coded samples from three buffy coats were distributed to five laboratories for determination of MF using six different protocols. The results indicated a good agreement between split samples within each laboratory. However, both the cloning efficiencies (CEs) and MFs measured for the same blood donors showed substantial inter-laboratory variations. Also, different medium compositions used in one and the same laboratory resulted in a remarkable difference in the level of MF. A uniform operating protocol (UOP) was proposed and compared with the traditional protocols in the second Ring test. The UOP (preincubation) increased the CE in laboratories traditionally using preincubation, but decreased the CE in laboratories traditionally using priming. Adjusted for donor, use of different protocols contributed significantly to the overall variation in lnCE (P=0.0004) and lnMF (P=0.03), but there was no significant laboratory effect on the lnCE (P=0.38) or lnMF (P=0.14) produced by the UOP alone. Finally, a simplified version of the UOP using the serum-free medium X-Vivo 10 and PMA was tested in one laboratory, and found to produce a considerable increase in CE. This modified UOP needs to be further evaluated in order to be used for future databases on HPRT MFs in various populations.  相似文献   

20.
Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report a novel point mutation that led to HGprt-related neurological dysfunction (HND) in a family in which there was a missense mutation in exon 6 of the coding region of the HPRT1 gene: g.34938G>T, c.403G>T, p.D135Y. Molecular diagnosis is consistent with the genetic heterogeneity of the HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号