共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible defenses that provide enhanced resistance to insect attack are nearly universal in plants. The defense-signaling cascade is mediated by the synthesis, movement, and perception of jasmonate (JA) and the interaction of this signaling molecule with other plant hormones and messengers. To explore how the interaction of JA and ethylene influences induced defenses, we employed the never-ripe (Nr) tomato mutant, which exhibits a partial block in ethylene perception, and the defenseless (def1) mutant, which is deficient in JA biosynthesis. The defense gene proteinase inhibitor (PIN2) was used as marker to compare plant responses. The Nr mutant showed a normal wounding response with PIN2 induction, but the def1 mutant did not. As expected, methyl JA (MeJA) treatment restored the normal wound response in the def1 mutant. Exogenous application of MeJA increased resistance to Helicoverpa zea, induced defense gene expression, and increased glandular trichome density on systemic leaves. Exogenous application of ethephon, which penetrates tissues and decomposes to ethylene, resulted in increased H. zea growth and interfered with the wounding response. Ethephon treatment also increased salicylic acid in systemic leaves. These results indicate that while JA plays the main role in systemic induced defense, ethylene acts antagonistically in this system to regulate systemic defense. 相似文献
2.
Girard C Rivard D Kiggundu A Kunert K Gleddie SC Cloutier C Michaud D 《The New phytologist》2007,173(4):841-851
We assessed the ability of the fungal elicitor arachidonic acid to induce cystatin genes in tomato (Solanum lycopersicum), using a cDNA expression library from arachidonate-treated leaves. The cDNAs of two novel cystatins were isolated, coding for an approx. 11-kDa protein, SlCYS10; and for a 23.6-kDa protein, SlCYS9, bearing an N-terminal signal peptide and a long, 11.5-kDa extension at the C terminus. Both genes were induced by arachidonate but not by methyl jasmonate, an inducer of the 88-kDa eight-unit cystatin, multicystatin, accumulated in the cytosol of leaf cells upon herbivory. A truncated form of SlCYS9, tSlCYS9, was produced by deletion of the C-terminal extension to assess the influence of this structural element on the cystatin moiety. As shown by kinetic and stability assays with recombinant variants expressed in Escherichia coli, deleting the extension influenced both the overall stability and inhibitory potency of SlCYS9 against cysteine proteases of herbivorous organisms. These findings provide evidence for a multicomponent elicitor-inducible cystatin complex in tomato, including at least 10 cystatin units produced via two metabolic routes. 相似文献
3.
4.
Soil salinity is one of the major abiotic stress limiting crop productivity and the geographical distribution of many important crops worldwide. To gain a better understanding of the salinity stress responses at physiological and molecular level in cultivated tomato (Solanum lycopersicum. cv. Supermarmande), we carried out a comparative physiological and proteomic analysis. The tomato seedlings were cultivated using a hydroponic system in the controlled environment growth chamber. The salt stress (NaCl) was applied (0, 50, 100, 150 and 200?mM), and maintained for 14 days. Salt treatment induced a plant growth reduction estimated as fresh-dry weight. Photosynthetic pigments (chlorophyll a, b) content of NaCl-treated tomato plants was significantly decreased as the salinity level increased. Proline accumulation levels in leaf and root tissues increased significantly with increasing NaCl concentration. Relative electrolyte leakage known as an indicator of membrane damage caused by salt stress was increased proportionally according to the NaCl concentrations. Roots of control and salt-stressed plants were also sampled for phenol protein extraction. Proteins were separated by two-dimensional gel electrophoresis (2-DGE). Several proteins showed up- and downregulation during salt stress. MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be in a wide range of physiological processes, that is, energy metabolism, ROS (reactive oxygen species) scavenging and detoxification, protein translation, processing and degradation, signal transduction, hormone and amino acid metabolism, and cell wall modifications. All proteins might work cooperatively to reestablish cellular homeostasis under salt stress, water deficiency, and ionic toxicity. 相似文献
5.
A cDNA encoding insulin-degrading enzyme (IDE) was cloned from tomato (Solanum lycopersicum) and expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase. GST-SlIDE was characterized as a neutral thiol-dependent metallopeptidase with insulinase activity: the recombinant enzyme cleaved the oxidized insulin B chain at eight peptide bonds, six of which are also targets of human IDE. Despite a certain preference for proline in the vicinity of the cleavage site, synthetic peptides were cleaved at apparently stochastic positions indicating that SlIDE, similar to IDEs from other organisms, does not recognize any particular amino acid motif in the primary structure of its substrates. Under steady-state conditions, an apparent K(m) of 62+/-7 microm and a catalytic efficiency (k(cat)/K(m)) of 62+/-15 mm(-1) s(-1) were determined for Abz-SKRDPPKMQTDLY(NO(3))-NH(2) as the substrate. GST-SlIDE was effectively inhibited by ATP at physiological concentrations, suggesting regulation of its activity in response to the energy status of the cell. While mammalian and plant IDEs share many of their biochemical properties, this similarity does not extend to their function in vivo, because insulin and the beta-amyloid peptide, well-established substrates of mammalian IDEs, as well as insulin-related signaling appear to be absent from plant systems. 相似文献
6.
Salem M. Al-Amri 《Saudi Journal of Biological Sciences》2013,20(4):339-345
A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions. 相似文献
7.
Protoplasma - Tomato is an excellent model for studying fruit development, ripening, and other secondary metabolic pathways such as carotenoid biosynthetic pathway, flavonoid pathway, and many... 相似文献
8.
Naeem Muhammad Shahzad Khurram Saqib Saddam Shahzad Asim Nasrullah Younas Muhammad Afridi Muhammad Irfan 《Plant Growth Regulation》2022,96(3):369-382
Plant Growth Regulation - The CONSTITUTIVE PHOTOMORPHOGENIC (COP) 1LIKE is a regulatory protein and repressor of photomorphogenesis; which control many processes of development in plants. Here, the... 相似文献
9.
This study presents evidence for the role of BCAT3 and BCAT4 proteins in the synthesis of branched-chain-amino-acids in tomato Solanum lycopersicum. BCAT3 and BCAT4 genes were located on tomato chromosomal map by RFLP method (restriction fragment length polymorphism). Using confocal microscopy it was shown that BCAT3-GFP and BCAT4-GFP fusion proteins were localised in chloroplasts. It was observed that these aminotransferase isoforms exhibited distinct kinetic properties and a differential expression pattern of mRNA levels in various tomato tissues. 相似文献
10.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl. 相似文献
11.
Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity 总被引:1,自引:0,他引:1
BACKGROUND AND AIMS: Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. METHODS: Two tomato (Solanum lycopersicum) cultivars ('Kosaco' and 'Josefina') were subjected to 0.05 (control), 0.5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H(2)O(2); malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. KEY RESULTS: The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H(2)O(2) in the leaves of the two cultivars, these trends being more pronounced in 'Josefina' than in 'Kosaco'. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in 'Kosaco'. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. CONCLUSIONS: High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell-Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. 相似文献
12.
Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants 总被引:9,自引:0,他引:9
Wild-type and abscisic acid (ABA) -deficient (sitiens) tomato plants were used to analyse the effects of abscisic acid (ABA), butyric acid (BA), jasmonic acid (JA) and linolenic acid (LA) on assimilation and transpiration rates in detached leaves taking up those substances into the transpiration stream. BA did not affect assimilation and transpiration rates. ABA decreased assimilation and transpiration in both wild-type and ABA-deficient mutants. JA reduced the assimilation rate in both lines but induced a significant reduction of transpiration in the wild type only. The response to LA in both lines was slower than that to JA. 相似文献
13.
Ghanem ME Ghars MA Frettinger P Pérez-Alfocea F Lutts S Wathelet JP du Jardin P Fauconnier ML 《Journal of plant physiology》2012,169(11):1090-1101
Oxylipins have been extensively studied in plant defense mechanisms or as signal molecules. Depending on the stress origin (e.g. wounding, insect, pathogen), and also on the plant species or organ, a specific oxylipin signature can be generated. Salt stress is frequently associated with secondary stress such as oxidative damage. Little is known about the damage caused to lipids under salt stress conditions, especially with respect to oxylipins. In order to determine if an organ-specific oxylipin signature could be observed during salt stress, tomato (Solanum lycopersicum cv. Money Maker) plants were submitted to salt stress (100 mM of NaCl) for a 30-d period. A complete oxylipin profiling and LOX related-gene expression measurement were achieved in leaves and roots. As expected, salt stress provoked premature senescence in leaves, as revealed by a decrease in photosystem II efficiency (F(v)/F(m) ratio) and sodium accumulation in leaves. In roots, a significant decrease in several oxylipins (9- and 13-hydro(pero)xy linole(n)ic acids, keto and divinyl ether derivatives) was initiated at day 5 and intensified at day 21 after salt treatment, whereas jasmonic acid content increased. In leaves, the main changes in oxylipins were observed later (at day 30), with an increase in some 9- and 13-hydro(pero)xy linole(n)ic acids and a decrease in some keto-derivatives and in jasmonic acid. Oxylipin enantiomeric characterization revealed that almost all compounds were formed enzymatically, and therefore a massive auto-oxidation of lipids that can be encountered in abscission processes can be excluded here. 相似文献
14.
15.
Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants 总被引:1,自引:0,他引:1
Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO?? accumulated more Cd than plants fed NH??. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO??. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO?? and NH?? treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO??-facilitated Cd accumulation in plants. 相似文献
16.
Annexins have been suggested to play pivotal roles in stress resistance and plant development. However, related studies on fruit-bearing plants, especially on fruit development, are very limited. In the present study, we provide a comprehensive overview of the annexin family in tomato, describing the gene structure, promoter cis-regulatory elements, organ expression profile, and gene expression patterns under hormone and stress treatments. Bioinformatic analysis revealed that the nine tomato annexins were structurally different from their animal counterparts, but highly conserved annexin domains were still found in most of them. Cis-regulatory element prediction showed that there were important elements in the 2kb upstream promoter regions, including stress- and hormone-responsive-related elements. The expression patterns of these genes were investigated, and the results revealed that they were regulated under developmental processes and environmental stimuli. Among them, AnnSl1.1 and AnnSl2 were highly expressed in most of the tested organs. Genes preferentially or specifically expressed in organs, such as stigma or ovary (AnnSl6), stamen (AnnSl8), and fruit pericarp (AnnSl1.2 and AnnSl9), were identified. Some annexin genes were induced by plant hormones including abscisic acid (AnnSl3, AnnSl6, AnnSl8, and AnnSl9) and gibberellic acid (AnnSl1.1, AnnSl1.2, AnnSl4, and AnnSl7). Most of these annexin genes were induced by salt, drought, wounding, and heat or cold stresses. The present study provides significant information for understanding the diverse roles of annexins in tomato growth and development. 相似文献
17.
Perveen Sumera Khan Tehmina Ahsan Shaheen Humaira Naz Rabia Hyder Muhammad Zeeshan Ijaz Bushra Naqvi S. M. Saqlan Yasmin Tayyaba 《In vitro cellular & developmental biology. Plant》2021,57(6):907-922
In Vitro Cellular & Developmental Biology - Plant - The OsRGLP1 gene was overexpressed under the control of CaMV 35S promoter in tomato (Solanum lycopersicum L.) plants using... 相似文献
18.
Tieman DM Zeigler M Schmelz EA Taylor MG Bliss P Kirst M Klee HJ 《Journal of experimental botany》2006,57(4):887-896
Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of approximately 30 volatile compounds synthesized from a diverse set of precursors, including amino acids, lipids, and carotenoids. Some of these volatiles impart desirable qualities while others are negatively perceived. As a first step to identify the genes responsible for the synthesis of flavour-related chemicals, an attempt was made to identify loci that influence the chemical composition of ripe fruits. A genetically diverse but well-defined Solanum pennellii IL population was used. Because S. pennellii is a small green-fruited species, this population exhibits great biochemical diversity and is a rich source of genes affecting both fruit development and chemical composition. This population was used to identify multiple loci affecting the composition of chemicals related to flavour. Twenty-five loci were identified that are significantly altered in one or more of 23 different volatiles and four were altered in citric acid content. It was further shown that emissions of carotenoid-derived volatiles were directly correlated with the fruit carotenoid content. Linked molecular markers should be useful for breeding programmes aimed at improving fruit flavour. In the longer term, the genes responsible for controlling the levels of these chemicals will be important tools for understanding the complex interactions that ultimately integrate to provide the unique flavour of a tomato. 相似文献
19.
20.
Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics
Arnaud Bovy Elio Schijlen Robert D. Hall 《Metabolomics : Official journal of the Metabolomic Society》2007,3(3):399-412
Flavonoids comprise a large and diverse group of polyphenolic plant secondary metabolites. In plants, flavonoids play important
roles in many biological processes such as pigmentation of flowers, fruits and vegetables, plant-pathogen interactions, fertility
and protection against UV light. Being natural plant compounds, flavonoids are an integral part of the human diet and there
is increasing evidence that dietary polyphenols are likely candidates for the observed beneficial effects of a diet rich in
fruits and vegetables on the prevention of several chronic diseases. Within the plant kingdom, and even within a single plant
species, there is a large variation in the levels and composition of flavonoids. This variation is often due to specific mutations
in flavonoid-related genes leading to quantitative and qualitative differences in metabolic profiles. The use of such specific
flavonoid mutants with easily scorable, visible phenotypes has led to the isolation and characterisation of many structural
and regulatory genes involved in the flavonoid biosynthetic pathway from different plant species. These genes have been used
to engineer the flavonoid biosynthetic pathway in both model and crop plant species, not only from a fundamental perspective,
but also in order to alter important agronomic traits, such as flower and fruit colour, resistance, nutritional value. This
review describes the advances made in engineering the flavonoid pathway in tomato (Solanum lycopersicum). Three different approaches will be described; (I) Increasing endogenous tomato flavonoids using structural or regulatory
genes; (II) Blocking specific steps in the flavonoid pathway by RNA interference strategies; and (III) Production of novel
tomato flavonoids by introducing novel branches of the flavonoid pathway. Metabolite profiling is an essential tool to analyse
the effects of pathway engineering approaches, not only to analyse the effect on the flavonoid composition itself, but also
on other related or unrelated metabolic pathways. Metabolomics will therefore play an increasingly important role in revealing
a more complete picture of metabolic perturbation and will provide additional novel insights into the effect of the introduced
genes and the role of flavonoids in plant physiology and development. 相似文献