首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota.  相似文献   

3.
4.
Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales—3 CSIs and 169 SPs, Thermoproteales—5 CSIs and 25 SPs, Desulfurococcales—4 SPs, and Sulfolobales and Desulfurococcales—2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and the Thaumarchaeota and for the classification of related and novel species in different environments. Functional studies on these signature proteins could lead to discovery of novel biochemical properties that are unique to these groups of archaea.  相似文献   

5.
土壤是植物定居的场所,也是植物-微生物互作的重要界面。古菌是土壤微生物重要组份,在碳、氮、硫、铁等元素的生物地球化学循环和植物的生长发育、适应生境中发挥重要作用。植物定居对土壤古菌群落的影响研究鲜有开展,孑遗植物在研究植物-微生物-环境互作中具有独特的优势。采用扩增子高通量测序技术,研究以荒漠孑遗植物四合木为建群种或优势种的四合木-红砂-珍珠-针茅群落、四合木-针茅群落和四合木群落等三种荒漠植物群落类型中,四合木根区土壤和光板地土体土壤古菌群落特征,揭示四合木定居对土壤古菌物种数量、多样性、群落组成及功能的影响。结果表明,荒漠孑遗植物四合木定居不仅增加了根区土壤古菌的物种数量,提高了根区土壤古菌群落多样性,而且改变了土壤古菌群落组成,减少了奇古菌门Nitrososphaeraceae科未分类的属氨氧化古菌(unclassified_f_Nitrososphaeraceae)和暂定Nitrososphaera属氨氧化古菌(Candidatus Nitrososphaera)相对丰度,增加了Nitrososphaeraceae科暂定Nitrocosmicus属氨氧化古菌(Candidatus Nitrocosmicus)和广古菌门海洋古菌类群Ⅱ中未分类的属(norank_o_Marine_Group_II)相对丰度,广古菌门热原体纲未分类的属(unclassified_c__Thermoplasmata)相对丰度变化显著。植物群落演替对四合木根区土壤和光板地土体土壤古菌群落均无显著影响。Nitrososphaeraceae科氨氧化古菌是三种不同荒漠植物群落类型中土壤古菌的核心微生物组。四合木定居也显著改变土壤古菌群落的功能,减弱了高丰度功能,增强了低丰度功能,对有氧呼吸、核苷酸合成、氨基酸合成等途径影响显著。荒漠孑遗植物四合木定居改变了土壤古菌群落物种数量、多样性、组成、功能等特征。  相似文献   

6.
一个新的古菌类群———奇古菌门(Thaumarchaeota)   总被引:7,自引:0,他引:7  
基于16S rRNA基因的系统发育关系,古菌域(Archaea)被分为两个主要类群:广古菌门(Euryarchaeota)和泉古菌门(Crenarchaeota)。近20年来,微生物分子生态学技术的快速发展和应用显示,在中温环境中广泛存在着大量的未培养古菌,而且它们可能在自然界重要元素(N、C)的生物地球化学循环中发挥着重要作用。最初,这些未培养古菌因在16S rRNA基因系统发育上与泉古菌关系较密切而被称作中温泉古菌(non-thermophilic Crenarchaeota)。而近年来,对更多新发现的中温古菌核糖体RNA基因序列和其它分子标记物进行的分析均不支持中温泉古菌由嗜热泉古菌进化而来的假设,而揭示其可能代表古菌域中一个独立的系统发育分支。基因组学、生理生态特征等分析也显示中温泉古菌与泉古菌具有明显不同的特征。因而专家建议将这些古菌(中温泉古菌)划分为一个新的门,成为古菌域的第三个主要类群—Thaumarchaeota(意译为奇古菌门)。这一新古菌门提出后得到其他研究证据的支持和认可。本文对目前已知的奇古菌门的分类地位演化、基因组学、多样性和生理代谢特征等作一简要综述。  相似文献   

7.
Water chemistry, energetic modeling, and molecular analyses were combined to investigate the microbial ecology of a biofilm growing in a thermal artesian spring within Hot Springs National Park, AR. This unique fresh water spring has a low dissolved chemical load and is isolated from both light and direct terrestrial carbon input - resulting in an oligotrophic ecosystem limited for fixed carbon and electron donors. Evaluation of energy yields of lithotrophic reactions putatively linked to autotrophy identified the aerobic oxidation of methane, hydrogen, sulfide, ammonia, and nitrite as the most exergonic. Small subunit (SSU) rRNA gene libraries from biofilm revealed a low-diversity microbial assemblage populated by bacteria and archaea at a gene copy ratio of 45:1. Members of the bacterial family 'Nitrospiraceae', known for their autotrophic nitrite oxidation, dominated the bacterial SSU rRNA gene library (approximately 45%). Members of the Thaumarchaeota ThAOA/HWCGIII (>96%) and Thaumarchaeota Group I.1b (2.5%), which both contain confirmed autotrophic ammonia oxidizers, dominated the archaeal SSU rRNA library. Archaea appear to dominate among the ammonia oxidizers, as only ammonia monooxygenase subunit A (amoA) genes belonging to members of the Thaumarchaeota were detected. The geochemical, phylogenetic, and genetic data support a model that describes a novel thermophilic biofilm built largely by an autotrophic nitrifying microbial assemblage. This is also the first observation of 'Nitrospiraceae' as the dominant organisms within a geothermal environment.  相似文献   

8.
Copper membrane monooxygenases (CuMMOs) play critical roles in the global carbon and nitrogen cycles. Organisms harboring these enzymes perform the first, and rate limiting, step in aerobic oxidation of ammonia, methane, or other simple hydrocarbons. Within archaea, only organisms in the order Nitrososphaerales (Thaumarchaeota) encode CuMMOs, which function exclusively as ammonia monooxygenases. From grassland and hillslope soils and aquifer sediments, we identified 20 genomes from distinct archaeal species encoding divergent CuMMO sequences. These archaea are phylogenetically clustered in a previously unnamed Thermoplasmatota order, herein named the Ca. Angelarchaeales. The CuMMO proteins in Ca. Angelarchaeales are more similar in structure to those in Nitrososphaerales than those of bacteria, and contain all functional residues required for general monooxygenase activity. Ca. Angelarchaeales genomes are significantly enriched in blue copper proteins (BCPs) relative to sibling lineages, including plastocyanin-like electron carriers and divergent nitrite reductase-like (nirK) 2-domain cupredoxin proteins co-located with electron transport machinery. Ca. Angelarchaeales also encode significant capacity for peptide/amino acid uptake and degradation and share numerous electron transport mechanisms with the Nitrososphaerales. Ca. Angelarchaeales are detected at high relative abundance in some of the environments where their genomes originated from. While the exact substrate specificities of the novel CuMMOs identified here have yet to be determined, activity on ammonia is possible given their metabolic and ecological context. The identification of an archaeal CuMMO outside of the Nitrososphaerales significantly expands the known diversity of CuMMO enzymes in archaea and suggests previously unaccounted organisms contribute to critical global nitrogen and/or carbon cycling functions.Subject terms: Environmental microbiology, Microbial ecology, Soil microbiology, Next-generation sequencing  相似文献   

9.
Nitrification represents one of the key steps in the global nitrogen cycle. While originally considered an exclusive metabolic capability of bacteria, the identification of the Thaumarchaeota revealed that ammonia-oxidizing archaea (AOA) are also important contributors to this process, particularly in acidic environments. Nonetheless, the relative contribution of AOA to global nitrification remains difficult to ascertain, particularly in underexplored neutrophilic and alkalinophilic terrestrial systems. In this study we examined the contribution of AOA to nitrification within alkaline (pH 8.3–8.7) cave environments using quantitative PCR, crenarchaeol lipid identification and measurement of potential nitrification rates. Our results showed that AOA outnumber ammonia-oxidizing bacteria (AOB) by up to four orders of magnitude in cave sediments. The dominance of Thaumarchaeota in the archaeal communities was confirmed by both archaeal 16S rRNA gene clone library and membrane lipid analyses, while potential nitrification rates suggest that Thaumarchaeota may contribute up to 100% of ammonia oxidation in these sediments. Phylogenetic analysis of Thaumarchaeota amoA gene sequences demonstrated similarity to amoA clones across a range of terrestrial habitats, including acidic ecosystems. These data suggest that despite the alkaline conditions within the cave, the low NH3 concentrations measured continue to favor growth of AOA over AOB populations. In addition to providing important information regarding niche differentiation within Thaumarchaeota, these data may provide important clues as to the factors that have historically led to nitrate accumulation within cave sediments.  相似文献   

10.
Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5'-phosphosulfate reductase/oxidase's (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota.  相似文献   

11.
Marine sediments represent a vast habitat for complex microbiomes. Among these, ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are one of the most common, yet little explored, inhabitants, which seem extraordinarily well adapted to the harsh conditions of the subsurface biosphere. We present 11 metagenome-assembled genomes of the most abundant AOA clades from sediment cores obtained from the Atlantic Mid-Ocean ridge flanks and Pacific abyssal plains. Their phylogenomic placement reveals three independently evolved clades within the order Nitrosopumilales, of which no cultured representative is known yet. In addition to the gene sets for ammonia oxidation and carbon fixation known from other AOA, all genomes encode an extended capacity for the conversion of fermentation products that can be channeled into the central carbon metabolism, as well as uptake of amino acids probably for protein maintenance or as an ammonia source. Two lineages encode an additional (V-type) ATPase and a large repertoire of DNA repair systems that may allow to overcome the challenges of high hydrostatic pressure. We suggest that the adaptive radiation of AOA into marine sediments occurred more than once in evolution and resulted in three distinct lineages with particular adaptations to this extremely energy-limiting and high-pressure environment.Subject terms: Phylogenetics, Metagenomics  相似文献   

12.
Although most hypotheses to explain the emergence of the eukaryotic lineage are conflicting, some consensus exists concerning the requirement of a genomic fusion between archaeal and bacterial components. Recent phylogenomic studies have provided support for eocyte-like scenarios in which the alleged 'archaeal parent' of the eukaryotic cell emerged from the Crenarchaeota/Thaumarchaeota. Here, we provide evidence for a scenario in which this archaeal parent emerged from within the 'TACK' superphylum that comprises the Thaumarchaeota, Crenarchaeota and Korarchaeota, as well as the recently proposed phylum 'Aigarchaeota'. In support of this view, functional and comparative genomics studies have unearthed an increasing number of features that are uniquely shared by the TACK superphylum and eukaryotes, including proteins involved in cytokinesis, membrane remodeling, cell shape determination and protein recycling.  相似文献   

13.
Archaeal viruses, or archaeoviruses, display a wide range of virion morphotypes. Whereas the majority of those morphotypes are unique to archaeal viruses, some are more widely distributed across different cellular domains. Tailed double-stranded DNA archaeoviruses are remarkably similar to viruses of the same morphology (order Caudovirales) that infect many bacterial hosts. They have, so far, only been found in one phylum of the archaea, the Euryarchaeota, which has led to controversial hypotheses about their origin. In the present paper, we describe the identification and analysis of a putative provirus present in the genome of a mesophilic thaumarchaeon. We show that the provirus is related to tailed bacterial and euryarchaeal viruses and encodes a full complement of proteins that are required to build a tailed virion. The recently discovered wide distribution of tailed viruses in Euryarchaeota and the identification of a related provirus in Thaumarchaeota, an archaeal phylum which might have branched off before the separation of Crenarchaeota and Euryarchaeota, suggest that an association of these viruses with Archaea might be more ancient than previously anticipated.  相似文献   

14.
Microbes are abundant in nature and often highly adapted to local conditions. While great progress has been made in understanding the ecological factors driving their distribution in complex environments, the underpinning molecular‐evolutionary mechanisms are rarely dissected. Therefore, we scrutinized the coupling of environmental and molecular adaptation in Thaumarchaeota, an abundant archaeal phylum with a key role in ammonia oxidation. These microbes are adapted to a diverse spectrum of environmental conditions, with pH being a key factor shaping their contemporary distribution and evolutionary diversification. We integrated high‐throughput sequencing data spanning a broad representation of ammonia‐oxidizing terrestrial lineages with codon modelling analyses, testing the hypothesis that ammonia monooxygenase subunit A (AmoA) – a highly conserved membrane protein crucial for ammonia oxidation and classical marker in microbial ecology – underwent adaptation during specialization to extreme pH environments. While purifying selection has been an important factor limiting AmoA evolution, we identified episodic shifts in selective pressure at the base of two phylogenetically distant lineages that independently adapted to acidic conditions and subsequently gained lasting ecological success. This involved nonconvergent selective mechanisms (positive selection vs. selection acting on variants fixed during an episode of relaxed selection) leading to unique sets of amino acid substitutions that remained fixed across the radiation of both acidophilic lineages, highlighting persistent adaptive value in acidic environments. Our data demonstrates distinct trajectories of AmoA evolution despite convergent phenotypic adaptation, suggesting that microbial environmental specialization can be associated with diverse signals of molecular adaptation, even for marker genes employed routinely by microbial ecologists.  相似文献   

15.
Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle?   总被引:3,自引:0,他引:3  
Cultivation-independent molecular surveys show that members of the kingdom Crenarchaeota within the domain Archaea represent a substantial component of microbial communities in aquatic and terrestrial environments. Recently, metagenomic studies have revealed that such Crenarchaeota contain and express genes related to those of bacterial ammonia monooxygenases. Furthermore, a marine chemolithoautotrophic strain was isolated that uses ammonia as a sole energy source. Considering the ubiquity and abundance of Crenarchaeota, these findings considerably challenge the accepted view of the microbial communities involved in global nitrogen cycling. However, the quantitative contribution of Archaea to nitrification in marine and terrestrial environments still remains to be elucidated.  相似文献   

16.
Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.  相似文献   

17.
The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing of this genome will help in the understanding of methane cycling in volcanic environments.  相似文献   

18.
This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next‐Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia‐oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo‐acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4+ concentration. At the same time, abundant availability of NH4+ and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non‐nitrogen‐limited soils.  相似文献   

19.
The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).  相似文献   

20.
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号