首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

2.
This study examines the transfer of lipids from the yolk to the embryo of the king penguin, a seabird with a high dietary intake of n-3 fatty acids. The concentrations of total lipid, triacylglycerol (TAG), and phospholipid (PL) in the yolk decreased by ~80% between days 33 and 55 of development, indicating intensive lipid transfer, whereas the concentration of cholesteryl ester (CE) increased threefold, possibly due to recycling. Total lipid concentration in plasma and liver of the embryo increased by twofold from day 40 to hatching due to the accumulation of CE. Yolk lipids contained high amounts of C(20-22) n-3 fatty acids with 22:6(n-3) forming 4 and 10% of the fatty acid mass in TAG and PL, respectively. Both TAG and PL of plasma and liver contained high proportions of 22:6(n-3) ( approximately 15% in plasma and >20% in liver at day 33); liver PL also contained a high proportion of 20:4(n-6) (14%). Thus both 22:6(n-3) and 20:4(n-6), which are, respectively, abundant and deficient in the yolk, undergo biomagnification during transfer to the embryo.  相似文献   

3.
The hepatic fatty acid metabolism was investigated in rats stressed by selenium deficiency and enhanced fish oil intake. Changes in the composition of lipids, peroxides, and fatty acids were studied in the liver of rats fed either a Sedeficient (8 microg Se/kg) or a Se-adequate (300 microg Se/kg) diet, both rich in n-3 fatty acid-containing fish oil (100 g/kg diet) and vitamin E (146 mg alpha-tocopherol/kg diet). The two diets were identical except for their Se content. Se deficiency led to a decrease in hair coat density and quality as well as to changes in liver lipids, individual lipid fractions and phospholipid fatty acid composition of the liver. The low Se status did reduce total and reduced glutathione in the liver but did not affect the hepatic malondialdehyde level. In liver phospholipids (PL), Se deficiency significantly reduced levels of palmitic acid [16:0], fatty acids of the n-3 series such as DHA [22:6 n-3], and other long-chain polyunsaturates C-20-C-22, but increased n-6 fatty acids such as linoleic acid (LA) [18:2 n-6]. Thus, the conversion of LA to arachidonic acid was reduced and the ratio of n-6/n-3 fatty acids was increased. As in liver PL, an increase in the n-6/n-3 ratio was also observed in the mucosal total fatty acids of the small intestine. These results suggest that in rats with adequate vitamin E and enhanced fish oil intake, Se deficiency affects the lipid concentration and fatty acid composition in the liver. The changes may be related to the decreased levels of selenoenzymes with antioxidative functions. Possible effects of Se on absorption, storage and desaturation of fatty acids were also discussed.  相似文献   

4.
Weanling female rats raised on a fat-free diet for 8 weeks were then given the same diet supplemented with 0, 0.25, 0.5, or 1% by weight of cholesterol in addition to 10% of safflower oil for 3 days. Fatty acid compositions of cholesteryl esters (CE), triglycerides (TG), and phospholipids (PL) in liver and plasma were examined. Cholesterol feeding increased plasma and liver cholesterol contents and also affected the patterns of n-6 polyunsaturated fatty acids. There were no consistent changes in either plasma and liver TG which contained little 20:3n-6 and 20:4n-6. The levels of 20:3n-6 increased in plasma and liver PL, while proportions of 20:4n-6 decreased in liver and plasma CE. However, the absolute amount of 20:4n-6 in cholesteryl esters increased because of a threefold rise in cholesteryl ester levels. The changes might be attributable to an increased utilization of 20:4n-6 for cholesterol transport and/or an inhibition of delta 5-desaturation of n-6 fatty acids by cholesterol feeding.  相似文献   

5.
The influence of dietary polyunsaturated fatty acids on fatty acid composition, cholesterol and phospholipid content as well as 'fluidity' (assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probes) of brain synaptic plasma membranes (SPM) and their interactions with chronic ethanol effects were studied in rats fed for two generations with diets either devoid of (n-3) fatty acids (sunflower oil diet), rich in alpha-linolenic acid (soya oil diet) or in long chain (n-3) fatty acids (sunflower + cod liver oil diet). Results were compared with rats fed standard lab chow. Sunflower oil led to an increase in the (n-6)/(n-3) ratio in the membranes with an increase of the 'fluidity' at membrane apolar level; sunflower + cod liver oil decreased the (n-6)/(n-3) ratio without affecting membrane 'fluidity' while no difference was seen between the SPM of rats fed soya oil and standard diet. After 3 weeks alcohol intoxication in rat fed the standard diet: oleic alpha-linoleic acids and cholesterol levels were increased, arachidonic acid and the double bond index/saturated fatty acids were decreased and there was a decrease of 'fluidity' in the lipid core of the SPM. Soya oil almost totally abolished these usually observed changes in the SPM fatty acids composition but increased oleic acid and cholesterol without any change in fluidity. Sunflower oil led to the same general alterations of fatty acid as seen with standard diet but to a greater extent, with decrease of the 'fluidity" at the apolar level and in the region probed by TMA-DPH. When sunflower oil was supplemented with cod liver oil, oleic and alpha-linoleic acids were increased while the 'fluidity' of the apolar core of SPM was decreased. So, the small changes in fatty acid pattern seem able to modulate neural properties i.e. the responses to a neurotoxic like ethanol. A structurally specific role of PUFA is demonstrated by the pernicious effects of the alpha-linolenic acid deficient diet which are not totally prevented by the supply of long chain (n-3) PUFA.  相似文献   

6.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

7.
This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.  相似文献   

8.
The changes induced by dietary n-3 fatty acids (FA) in the lipids and FA of plasma, liver and blood cells, and their reversibility, was studied in mice given a diet containing 9% fish oil (FO) for 2 weeks and then returned to, and kept for another 2 weeks on, the usual standard lab chow diet. In plasma, the concentrations of phospholipids (PL), mostly phosphatidylcholine (PC), triacylglycerols (TG), cholesterol and cholesterol esters (CE) decreased rapidly after starting the FO diet, and remained low from day 3 onwards. This decrease was concomitant with a remarkable reduction in the n-6 FA, especially 18:2n-6, not compensated for by the relative enrichment in n-3 FA induced by FO. In liver, TG and CE decreased and PL slightly increased, all of them showing reduced n-6/n-3 ratios. Sphingomyelin, which lacks polyunsaturated FA other than small amounts of 18:2 and 24:2n-6, showed altered ratios between its very long chain monoenes and saturates. In the washout phase, the most rapid event was an immediate increase in 18:2n-6 and after a few days in 20:4n-6 in plasma and liver, where most of the lipid and FA changes were reversed completely in about 10 days. In the case of blood cells even 2 weeks were insufficient for a reversal to the initial n-6/n-3 ratios. The lipid class responsible for this lack of reversibility was phosphatidylethanolamine, PC having returned to the initial fatty acid composition during the stated period.  相似文献   

9.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

10.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

11.
Fatty acids from total lipids and polar lipids in cultured rainbow trout (Oncorhynchus mykiss) raised in seawater (SW) and freshwater (FW) were identified and quantified from the muscle samples in January, April, and July. The highest total lipid and polar lipid amounts were found in April. July contents of total lipids were low, but percent of the polyunsaturated fatty acids (PUFAs) was high in SW and FW environment (particularly n-3 PUFAs). Variety of 17 fatty acids was identified by GC-FID after transmethylation. The predominant fatty acids in rainbow trout from SW and FW were: docosahexaenoic acid among n-3 PUFAs, palmitic acid among saturated fatty acids (SFAs), and oleic acid among monounsaturated fatty acids (MUFAs). Appreciably higher n-3/n-6 ratio was found in total lipids in April (6.40, FW fish) and in polar lipids in July (18.76; SW fish). High n-3/n-6 ratio in total lipids and polar lipids of rainbow trout from SW and FW, besides beneficial n-3/n-6 ratio in the commercial fish food, could be characteristic for the local environmental conditions (Croatia).  相似文献   

12.
In female sea bream Sparus aurata fed a control diet (C), ovarian levels of neutral lipids (NL) and polar lipids (PL) remained constant between November and March, while a decrease in NL content was observed in liver and muscle. In the same period, liver PL content increased, while no changes were observed in muscle. Between March and June ovarian NL and PL showed a strong decrease, while NL remained constant in liver and muscle. When fish were fed a diet lacking in n-3 highly unsaturated fatty acids, n-3 HUFA (D), the pattern observed was similar to that found in the fish fed diet C, with the exception of liver NL, which increased between March and June. In general, the changes in fatty acid content, in both groups of fish, were highly influenced by the diet given to the broodstock, although these effects were greater on ovarian NL and PL than on liver and muscle lipids. Despite the fact that gilthead seabream females continue feeding during the spawning season, they probably make use of their liver and muscle reserves during the gonadal maturation process. Furthermore, the fatty acid composition of the broodstock diet was reflected in the body composition, especially in the ovaries.  相似文献   

13.
In pigs fed a standard pig mash the contents of polyunsaturated fatty acids (PUFAs) of both the n-6 and n-3 series were significantly higher in the dark red mm adductores compared to the light coloured m longissimus lumborum. Perirenal fat had a higher concentration of saturated fatty acids (14:0,16:0, 18:0) than backfat, and a lower concentration of monounsaturated fatty acids, such as 16:ln-7 and 18:ln-9. Daily supplementation of 50 ml cod liver oil, rich in n-3 PUFAs, during the fourth and third week before slaughter led to a 1.4 to 1.7 times increase in the contents of n-3 PUFAs in muscles and fat depots. There was no difference between the incorporation of n-3 PUFAs in dark and light muscles. Perirenal fat contained more 20:5n-3 (EPA) and 22:6n-3 (DHA), but less 20:ln-9 (eicosenoic acid) than the backfat, after cod liver oil supplementation rich in these 3 fatty acids. Supplementation of cod liver oil reduced the n-6/n-3 fatty acid ratio in all anatomical locations examined.  相似文献   

14.
Spontaneously hypertensive (SHR) and normotensive rats were fed a diet supplemented with linseed oil or cod liver oil for 22 weeks. The most remarkable finding was an extreme fall of linoleic acid in lipids from renal medulla after cod liver oil supplementation. In free fatty acids (FFA) eicosatrienoic acid (C2): 3n-9) appeared increased as a sign of essential fatty acid (EFA) deficiency.  相似文献   

15.
Feeding adult rats a 17% corn-oil diet for 8 weeks did not change brain polyunsaturated fatty acids (PUFA) compared to rats fed 2.2% corn oil (with 2.2% lard added). When the corn-oil diet was supplemented with 14.5% cod liver oil or 12.5% salmon oil, the fatty acid composition of brain PUFA was significantly altered, even if alpha-tocopherol was added to the salmon-oil diet. Comparing salmon-oil- and cod-liver-oil-fed animals with corn-oil-fed animals, arachidonic acid 22:4(n-6) and 22:5(n-6) were reduced, and 20:5(n-3), 22:5(n-3) and 22:6(n-3) were increased. Liver fatty acids were also significantly altered. Thus, the brain is not protected against a large excess of very-long-chain n-3 PUFA, which increase n-3/n-6 ratio and could lead to abnormal function, and which might be difficult to reverse.  相似文献   

16.
The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.  相似文献   

17.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

18.
Information on the prenatal accumulation of rat brain membrane lipids is scarce. In this study we investigated in detail the fatty acid (FA) composition of the rat brain, on each day from embryonic day 12 (E12) up to birth, and on 8 time points during the first 16 days of postnatal life, and correlated the FA changes with well-described events of neurogenesis and synaptogenesis. Between E14 and E17, there was a steep increase in the concentration of all the FAs: 16:0 increased by 136%, 18:0 by 139%, 18:1 by 92%, 20:4n-6 by 98%, 22:4n-6 by 116%, 22:5n-6 by 220%, and 22:6n-3 by 98%. After this period and up to birth, the concentration of the FAs plateaued, except that of 22:6n-3, which accumulated further, reaching an additional increase of 75%. After birth, except 22:5n-6, all FAs steadily increased at various rates. Estimation of the FA/PL molar ratios showed that prenatally the ratios of all the FAs either decreased or remained constant, but that of 22:6n-3 increased more than 2-fold; postnatally the ratios remained constant, with the exception of 22:4n-6 and 22:5n-6, which decreased. In conclusion, prenatal accumulation of brain fatty acids parallels important events in neurogenesis. 22:6n-3 is exceptional inasmuch in its steep accumulation occurs just prior to synaptogenesis.  相似文献   

19.
Rats were given a cod liver oil supplemented diet and a standard diet for 4 months. The cod liver oil supplementation resulted in a marked increase in the 20:5(n-3) and 22:6(n-3) fatty acids and a marked decrease in the 20:4(n-6) fatty acid in phosphatidylcholine and ethanolamine of the atrial membrane. Atria from the cod liver oil treated rats showed a marked decrease in contractile force, heart rate and cyclic AMP (cAMP) levels under basal conditions. Stimulation with noradrenaline (1 X 10(-6) M) during high oxygen saturation and reoxygenation resulted in an equal increase in the mechanical responses of the two groups in spite of the significantly different levels of cAMP, whereas in hypoxia, both the cAMP level and the contractile force were significantly lower in the cod liver oil treated group. These results indicate that changes in the fatty acid composition of heart membrane phospholipids is associated with changes in adenylate cyclase activity and physiological function of the rat heart and that an increase in the n-3/n-6 fatty acid ratio in membrane phospholipids of the heart results, when oxygen is abundant in enhanced cAMP-independent contractile activity.  相似文献   

20.
A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号