首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salinity of industrial wastewater evaporation ponds was artificially increased from 3-7% to 12-16% (w/v), in an attempt to reduce the activity of sulfate-reducing bacteria (SRB) and subsequent emission of H2S. To investigate the changes in bacterial diversity in general, and SRB in particular, following this salination, two sets of universal primers targeting the 16S rRNA gene and the functional apsA [adenosine-5'-phosphosulfate (APS) reductase alpha-subunit] gene of SRB were used. Phylogenetic analysis indicated that Proteobacteria was the most dominant phylum both before and after salination (with 52% and 68%, respectively), whereas Firmicutes was the second most dominant phylum before (39%) and after (19%) salination. Sequences belonging to Bacteroidetes, Spirochaetes and Actinobacteria were also found. Several groups of SRB from Proteobacteria and Firmicutes were also found to inhabit this saline environment. Comparison of bacterial diversity before and after salination of the ponds revealed both a shift in community composition and an increase in microbial diversity following salination. The share of SRB in the 16S rRNA gene was reduced following salination, consistent with the reduction of H2S emissions. However, the community composition, as shown by apsA gene analysis, was not markedly affected.  相似文献   

2.
Seawater toilet flushing, seawater intrusion in the sewerage, and discharge of sulfate-rich industrial effluents elevates sulfate content in wastewater. The application of sulfate-reducing bacteria (SRB) in wastewater treatment is very beneficial; as for example, it improves the pathogen removal and reduces the volume of waste sludge, energy requirement and costs. This paper evaluates the potential to apply biological sulfate reduction using acetate and propionate to saline sewage treatment in moderate climates. Long-term biological sulfate reduction experiments at 10 and 20 °C were conducted in a sequencing batch reactor with synthetic saline domestic wastewater. Subsequently, acetate and propionate (soluble organic carbon) conversion rate were determined in both reactors, in the presence of either or both fatty acids. Both acetate and propionate consumption rates by SRB were 1.9 times lower at 10 °C than at 20 °C. At 10 °C, propionate was incompletely oxidized to acetate. At 10 °C, complete removal of soluble organic carbon requires a significantly increased hydraulic retention time as compared to 20 °C. The results of the study showed that biological sulfate reduction can be a feasible and promising process for saline wastewater treatment in moderate climate.  相似文献   

3.
AIMS: Denitrification efficiency at 10% salinity was compared with that at 2% salinity. The characteristics of bacterial strains isolated from the denitrification system, where an improvement of denitrification efficiency was observed at a high salinity were investigated. METHODS AND RESULTS: Two continuous feeding denitrification systems for saline solutions of 2% and 10% salinity, were operated. Denitrification efficiency at 10% salinity was higher than that at 2% salinity. The bacterial strains were isolated using the trypticase soy agar (TSA) medium at 30 degrees C. The phylogenetic analysis of 16S rRNA gene sequences of isolates indicated that halophilic species were predominant at 10% salinity. CONCLUSIONS: The improvement of denitrification efficiency at a high salinity was demonstrated. The strains isolated from the denitrifying system with 10% salinity were halophilic bacteria, Halomonas sp. and Marinobacter sp., suggesting that these bacteria show a high denitrifying activity at 10% salinity. SIGNIFICANCE AND IMPACT OF THE STUDY: The long-term acclimated sludge used in this study resulted in high denitrification performance at a high salinity, indicating that the design of a high-performance denitrification system for saline wastewater will be possible.  相似文献   

4.
Ramat Hovav is a major chemical industrial park manufacturing pharmaceuticals, pesticides, and various aliphatic and aromatic halogens. All wastewater streams are collected in large evaporation ponds. Salinity in the evaporation ponds fluctuates between 3% (w/v) and saturation and pH values range between 2.0 and 10.0. We looked for microorganisms surviving in these extreme environmental conditions and found that 2 yeast strains dominate this biotope. 18S rDNA sequence analysis identified the isolates as Pichia guilliermondii and Rhodotorula mucilaginosa. Both isolates grew in NaCl concentrations ranging up to 3.5 M and 2.5 M, respectively, and at a pH range of 2-10. There was a distinct difference between the Rhodotorula and Pichia strains and S. cerevisiae RS16 that served as a control strain with respect to accumulation of osmoregulators and internal ion concentrations when exposed to osmotic stress. The Pichia and Rhodotorula strains maintained high glycerol concentration also in media low in NaCl. Utilization of various carbon sources was examined. Using a tetrazolium-based assay we show that the Rhodotorula and Pichia strains are capable of utilizing a wide range of different carbon sources including anthracene, phenanthrene, and other cyclic aromatic hydrocarbons.  相似文献   

5.
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Steppe in southeastern Siberia in Russia. For this purpose, a polyphasic approach was used, including denaturing gradient gel electrophoresis of dsr gene fragments, sulfate reduction rate measurements, serial dilutions, and quantitative real-time PCR (qPCR). Comparative sequence analysis revealed the presence of several novel clusters of SRB, mostly affiliated with members of the order Desulfovibrionales and family Desulfobacteraceae. We detected sulfate reducers and observed substantial sulfate reducing rates (between 12 and 423 micromol/dm(3) day(-1)) for most lakes, even at a salinity of 475 g/liter. Enrichments were obtained at salt saturating conditions (4 M Na(+)), using H(2) or volatile fatty acids as electron donors, and an extremely halophilic SRB, strain ASO3-1, was isolated. Furthermore, a high dsr gene copy number of 10(8) cells per ml was detected in a hypersaline lake by qPCR. Our results indicate the presence of diverse and active SRB communities in these extreme ecosystems.  相似文献   

6.
Biological treatment of saline wastewater by conventional activated sludge culture usually results in low removal of chemical oxygen demand (COD) because of plasmolysis of the organisms at high salt concentrations. Since salt removal operations by physicochemical processes before biological treatment are costly, a salt-tolerant organism (Halobacter halobium) was used for effective biological treatment of saline wastewater in this study. Halobacter halobium was used in activated sludge culture for COD removal from saline wastewater (1–5% salt) by fed-batch operation of an aeration tank. Inclusion of Halobacter halobium into activated sludge culture improved the rate and extent of COD removals especially with salt above 2% (w/v).  相似文献   

7.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

8.
Oxygen defense in sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Sulfate-reducing bacteria (SRB) are strict anaerobes that are often found in biotopes where oxic conditions can temporarily exist. The bacteria have developed several defense strategies in order to survive exposure to oxygen. These strategies includes peculiar behaviors in the presence of oxygen, like aggregation or aerotaxis, and enzymatic systems dedicated to the reduction and the elimination of oxygen and its reactive species. Sulfate-reducing bacteria, and specially Desulfovibrio species, possess a variety of enzymes acting together to achieve an efficient defense against oxidative stress. The function and occurrence of these enzymatic systems are described.  相似文献   

9.
Performances of biological treatment processes of saline wastewater are usually low because of adverse effects of salt on microbial flora. High salt concentrations in wastewater cause plasmolysis and loss of activity of cells resulting in low COD removal efficiencies. In order to improve biological treatment performance of saline wastewater, a halophilic organism Halobacter halobium was used along with activated sludge culture.A synthetic wastewater composed of diluted molasses, urea, KH2PO4 and various concentrations of salt (1%–5% NaCl) was treated in an aerobic-biological reactor by fed-batch operation. Activated sludge culture with and without Halobacter were used as seed cultures. Variations of COD removal rate and efficiency with salt concentration were determined for both cultures and results were compared. Inclusion of Halobacter into activated sludge culture resulted in significant improvements in COD removal efficiency. A rate expression including salt inhibition effect was proposed and kinetic constants were determined by using experimental data.This study was supported by the Technical and Scientific Research Council of Turkey.  相似文献   

10.
为实现优势菌种的工程应用,由焦化废水处理站污泥筛选优势好氧菌A和兼性厌氧菌F,使用谷壳g、豆皮d为载体,采用固体发酵法进行固定化产品制备。初步研究表明固体发酵法固定菌种具有可行性,主要调控因素有温度、初始含水率、工业废水比例、pH、通风量和发酵时间。以pH8.0、温度好氧菌30℃(兼性厌氧菌35℃)、接种量1mL茴液儋田定化载体,初始含水量80%,固体发酵时间5d,低于60℃鼓风干燥,制备固定化产品。保存三个月,谷壳固定化产品好氧菌八的硝化能力和兼性厌氧菌R的反硝化能力不随保存时间的延长而改变;豆皮固定化产品氏、Fd降解能力随保存时问延长下降12%左右。以实验室岔/O工艺系统验证固定化产品处理焦化废水效果,缺氧池中无NO3-N积累,反硝化作用明显。氐和气对氰化物的去除率均达99%以上;对苯酚的去除效果气(98.84%)优于氏(79.6%);但对NH4+-N的去除率氏(75.46%)优于Ag(62.55%)。  相似文献   

11.
为实现优势菌种的工程应用,由焦化废水处理站污泥筛选优势好氧菌A和兼性厌氧菌F,使用谷壳g、豆皮d为载体,采用固体发酵法进行固定化产品制备.初步研究表明固体发酵法固定菌种具有可行性,主要调控因素有温度、初始含水率、工业废水比例、pH、通风量和发酵时间.以pH 8.0、温度好氧菌30℃(兼性厌氧菌35℃)、接种量1mL菌液/g固定化液体,初始含水量80%,固体发酵时间5d,低于60℃鼓风干燥,制备固定化产品.保存三个月,谷壳固定化产品好氧菌Ag的硝化能力和兼性厌氧菌Fg的反硝化能力不随保存时间的延长而改变;豆皮固定化产品Ad、Fd降解能力随保存时间延长下降12%左右.以实验室A2/O工艺系统验证固定化产品处理焦化废水效果,缺氧池中无NO3 - -N积累,反硝化作用明显.Ad和Ag对氰化物的去除率均达99%以上;对苯酚的去除效果Ag(98.84%)优于Ad(79.6%);但对NH4+ -N的去除率Ad (75.46%)优于Ag (62.55%).  相似文献   

12.
A denitrification system for saline wastewater utilizing halophilic denitrifying bacteria has not been developed so far. In this study, denitrification performance and microbial community under various saline conditions were investigated using denitrifying sludge acclimated under low-salinity condition for a few years as seed sludge. A continuous denitrification experiment showed that denitrification performance and microbial community at 10% salinity was higher than that at 1% salinity. The microbial community in the denitrification sludge that was acclimated under low salinity was monitored by terminal-restriction fragment length polymorphism (T-RFLP) analysis during acclimation to high-salinity condition. T-RFLP profiles and clone analysis based on 16S rRNA-encoding genes in the sludge of the denitrification system with 10% salinity indicated that the γ-Proteobacteria, particularly Halomonas spp., were predominant species, suggesting that these bacterial members were possibly responsible for a high denitrification activity under high-salinity conditions. Furthermore, the investigation of denitrification performance under various saline conditions revealed that 4–10% salinity results in the highest denitrification rate, indicating that this salinity was optimal for predominant bacterial species to exhibit denitrification activity. These results indicate the possibility that an appropriate denitrification system for saline wastewater can be designed using acclimated sludge with a halophilic community.  相似文献   

13.
W M Wu  R F Hickey    J G Zeikus 《Applied microbiology》1991,57(12):3438-3449
Granules from an upflow anaerobic sludge blanket system treating a brewery wastewater that contained mainly ethanol, propionate, and acetate as carbon sources and sulfate (0.6 to 1.0 mM) were characterized for their physical and chemical properties, metabolic performance on various substrates, and microbial composition. Transmission electron microscopic examination showed that at least three types of microcolonies existed inside the granules. One type consisted of Methanothrix-like rods with low levels of Methanobacterium-like rods; two other types appeared to be associations between syntrophic-like acetogens and Methanobacterium-like organisms. The granules were observed to be have numerous vents or channels on the surface that extended into the interior portions of the granules that may be involved in release of gas formed within the granules. The maximum substrate conversion rates (millimoles per gram of volatile suspended solids per day) at 35 degrees C in the absence of sulfate were 45.1, 8.04, 4.14, and 5.75 for ethanol, acetate, propionate, and glucose, respectively. The maximum methane production rates (millimoles per gram of volatile suspended solids per day) from H2-CO2 and formate were essentially equal for intact granules (13.7 and 13.5) and for physically disrupted granules (42 and 37). During syntrophic ethanol conversion, both hydrogen and formate were formed by the granules. The concentrations of these two intermediates were maintained at a thermodynamic equilibrium, indicating that both are intermediate metabolites in degradation. Formate accumulated and was then consumed during methanogenesis from H2-CO2. Higher concentrations of formate accumulated in the absence of sulfate than in the presence of sulfate. The addition of sulfate (8 to 9 mM) increased the maximum substrate degradation rates for propionate and ethanol by 27 and 12%, respectively. In the presence of this level of sulfate, sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, and acetate, but ethanol and propionate were converted via sulfate reduction by approximately 28 and 60%, respectively. In the presence of 2.0 mM molybdate, syntrophic propionate and ethanol conversion by the granules was inhibited by 97 and 29%, respectively. The data show that in this granular microbial consortium, methanogens and sulfate-reducing bacteria did not compete for common substrates. Syntrophic propionate and ethanol conversion was likely performed primarily by sulfate-reducing bacteria, while H2, formate, and acetate were consumed primarily by methanogens.  相似文献   

14.
Granules from an upflow anaerobic sludge blanket system treating a brewery wastewater that contained mainly ethanol, propionate, and acetate as carbon sources and sulfate (0.6 to 1.0 mM) were characterized for their physical and chemical properties, metabolic performance on various substrates, and microbial composition. Transmission electron microscopic examination showed that at least three types of microcolonies existed inside the granules. One type consisted of Methanothrix-like rods with low levels of Methanobacterium-like rods; two other types appeared to be associations between syntrophic-like acetogens and Methanobacterium-like organisms. The granules were observed to be have numerous vents or channels on the surface that extended into the interior portions of the granules that may be involved in release of gas formed within the granules. The maximum substrate conversion rates (millimoles per gram of volatile suspended solids per day) at 35 degrees C in the absence of sulfate were 45.1, 8.04, 4.14, and 5.75 for ethanol, acetate, propionate, and glucose, respectively. The maximum methane production rates (millimoles per gram of volatile suspended solids per day) from H2-CO2 and formate were essentially equal for intact granules (13.7 and 13.5) and for physically disrupted granules (42 and 37). During syntrophic ethanol conversion, both hydrogen and formate were formed by the granules. The concentrations of these two intermediates were maintained at a thermodynamic equilibrium, indicating that both are intermediate metabolites in degradation. Formate accumulated and was then consumed during methanogenesis from H2-CO2. Higher concentrations of formate accumulated in the absence of sulfate than in the presence of sulfate. The addition of sulfate (8 to 9 mM) increased the maximum substrate degradation rates for propionate and ethanol by 27 and 12%, respectively. In the presence of this level of sulfate, sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, and acetate, but ethanol and propionate were converted via sulfate reduction by approximately 28 and 60%, respectively. In the presence of 2.0 mM molybdate, syntrophic propionate and ethanol conversion by the granules was inhibited by 97 and 29%, respectively. The data show that in this granular microbial consortium, methanogens and sulfate-reducing bacteria did not compete for common substrates. Syntrophic propionate and ethanol conversion was likely performed primarily by sulfate-reducing bacteria, while H2, formate, and acetate were consumed primarily by methanogens.  相似文献   

15.
Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. While molybdate is a structural analog of sulfate and inhibits sulfate respiration of SRB, little information is available concerning the effect of molybdate on pure cultures. We followed the growth of Desulfovibrio gigas ATCC 19364, Desulfovibrio vulgaris Hildenborough, Desulfovibrio desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467, 395 and 314 nm and this color is proposed to be a molybdate–sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater.  相似文献   

16.
Abstract Four unidentified saccharolytic dissimilatory sulfate-reducing strains were isolated from an anaerobic digester. Cells were Gram-negative, motile, nonsporulating rods which differ markedly from known sulfate reducers especially with respect to carbon source utilisation and sulfur sources which can be reduced. The strains were capable of metabolising at least 26 out of 50 carbohydrates tested. Carbohydrates were, in the absence of exogenous sulfate, fermented to acetate, ethanol, lactate, carbon dioxide and hydrogen. In the presence of excess sulfate carbohydrates were fermented to acetate, ethanol, carbon dioxide, hydrogen and hydrogen sulfide, but lactate was not detected. An oxidized organic or inorganic sulfur source, including elemental sulfur, was not required as a prerequisite for growth on carbohydrates, Lactate was, in the presence of sulfate, converted to acetate, ethanol, carbon dioxide, hydrogen and hydrogen sulfide. In the absence of sulfate no lactate was utilised and no growth was observed.  相似文献   

17.
In continuous culture set-up for sulfate-reducing bacteria a sulfide electrode (made from silver wire) is used to control the electron donor supply and the medium pump. The sulfied concentration of the medium is kept at a low level by continuosly flushing out H2S and replacing it with CO2. The pH is controlled automatically by regulating the CO2 content of the gas mixture flushed through the medium. With the sulfide-controlled set-up sulfate-reducing bacteria can be grown in chemostat culture under electron donor as well as electron acceptor limitation. Furthermore, by continuously washing out the culture to a preselected residual sulfide concentration, cells can be grown in sulfidostat culture under non-limiting conditions at maximal growth rate. Growth yields of Desulfotmaculum orientis, when growth in this system with hydrogen as electron donor, were considerably higher than previously reported.  相似文献   

18.
Thermophilic sulfate-reducing bacteria in cold marine sediment   总被引:3,自引:0,他引:3  
Abstract Sulfate reduction was measured with the 35SO42− -tracer technique in slurries of sediment from Aarhus Bay, Denmark, where seasonal temperatures range from 0° to 15°C. The incubations were made at temperatures from 0°C to 80°C in temperature increments of 2°C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4°C and 30°C, whereas the activity at 60°C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain P60, were isolated and characterized as D esulfotomaculum kuznetsovii . The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50°–70°C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic activity. The viable population of thermophilic sulfate-reducing bacteria and the density of their spores was determined in most probable number (MPN) dilutions. The density was 2.8·104 cells·.g−1 fresh sediment, and the enumerations suggested that they were all present as spores. This result agrees well with the observed lag period in sulfate reduction above 50°C. No environment with temperatures supporting the growth of these thermophiles is known in the region around Aarhus Bay.  相似文献   

19.
Four recently described species of new genera of sulfate-reducing bacteria, Desulfobulbus propionicus, Desulfobacter postgatei, Desulfococcus multivorans and Desulfosarcina variabilis were examined with respect to adenylylsulfate reductase. All of the species examined contained the enzyme in sufficient concentrations to account for dissimilatory sulfate reduction.Adenylylsulfate reductase was enriched 17.1-fold from Desulfobulbus propionicus by ammonium sulfate fractionation, ion exchange chromatography and gel filtration. The molecular weight was 175,000 and the enzyme contained 1 mol of flavin, 8 mol of non heme iron and 8 mol of labile sulfide per mol enzyme. Either ferricyanide or cytochrome c could be used as electron acceptors; the pH optimum was 7.7 with ferricyanide and 8.8 with cytochrome c. K m values for AMP and sulfite were 90 M and 1.3 M with ferricyanide and 91 M and 71 M with cytochrome c as electron acceptor. K m values for ferricyanide and cytochrome c were 89 M and 21 M, respectively. The properties of the enzyme were compared with those of purified adenylylsulfate reductases from other microorganisms.Non-common abbreviation APS adenylylsulfate  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号