共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Cell cycle (Georgetown, Tex.)》2013,12(17):2697-2702
Polo-like kinase 1 (Plk1) is becoming an increasingly attractive target for cancer management. Plk1 has been shown to be over-expressed in a variety of cancers; however its role in skin cancers is not well-understood. We recently demonstrated that Plk1 is over-expressed in human melanoma and gene-knockdown as well as chemical-inhibition of Plk1 resulted in a significant decrease in melanoma cell viability and growth without affecting the growth of the normal human epidermal melanocytes (NHEMs). Further, the observed anti-proliferative response of Plk1 was found to be accompanied with a significant G2/M cell cycle arrest, mitotic catastrophe and induction of apoptosis in melanoma cells. In this study, we determined the expression profile of Plk1 in non-melanoma skin cancers viz. basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Our data demonstrated that like melanoma, Plk1 is significantly over-expressed in BCC and SCC samples. Further, we also found that compared to normal human epidermal keratinocytes (NHEKs), Plk1 was over-expressed at both the protein and mRNA levels in squamous A253 and A431 cells. In addition, a similar protein expression pattern was found for the downstream targets of Plk1, viz. Cdk1, Cyclin B1 and Cdc25C. We believe that the expression pattern of Plk1 in the various skin cancers, the insusceptibility of normal keratinocytes, to Plk1 inhibition and the easy accessibility for topical applications lends the skin as an attractive tissue for Plk1 based cancer chemoprevention and chemotherapeutic applications. 相似文献
3.
Jan Benada Kamila Burdová Tomá? Lidak Patrick von Morgen Libor Macurek 《Cell cycle (Georgetown, Tex.)》2015,14(2):219-231
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis. 相似文献
4.
Makoto R. Hara Benjamin D. Sachs Marc G. Caron Robert J. Lefkowitz 《Cell cycle (Georgetown, Tex.)》2013,12(2):219-231
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis. 相似文献
5.
The polo-like kinase family plays a vital role in many cell cycle related events. The family includes mammalian Plkl, Snk (Plk2), and Fnk/Prk (Plk3), Xenopus laevis Plxl,Drosophila polo, fission yeast Plol, and budding yeast Cdc5. These enzymes, in addition to a conserved kinase domain at the N-terminus, have highly conserved sequences called polo-box(s) in the non-catalytic C-terminal domain. Genetic and biochemical experiments with several different organisms have documented that polo-like kinases are involved in many aspects of the cell cycle, such as activation of Cdc2, centrosome assembly and maturation, activation of the anaphase-promoting complex (APC) during the metaphase-anaphase transition, and cytokinesis. 相似文献
6.
Plk1, an evolutionarily conserved M phase kinase, associates with not only spindle poles but also kinetochores during prometaphase. However, the role of Plk1 at kinetochores has been poorly understood. Here we show that BubR1 mediates the action of Plk1 at kinetochores for proper chromosome alignment. Our results show that BubR1 colocalizes with Plk1 at kinetochores of unaligned chromosomes and physically interacts with Plk1 in prometaphase cells. Down-regulation of Plk1 by small interfering RNA abolished the mobility-shifted, hyperphosphorylated form of BubR1 in the prometaphase-arrested cells. In addition, BubR1 was phosphorylated by Plk1 in vitro at two Plk1 consensus sites in the kinase domain of BubR1. The add-back of either wild-type BubR1 or BubR1 2E, in which the two Plk1 phosphorylation sites were replaced by glutamic acids, but not that of BubR1 2A, an unphosphorylatable mutant, rescued the chromosome alignment defects in BubR1-deficient cells. Moreover, when both Plk1 and BubR1 were down-regulated, the add-back of BubR1 2E, but not that of wild-type BubR1, rescued the chromosome alignment defects. These results taken together suggest that Plk1 facilitates chromosome alignment during prometaphase through BubR1. 相似文献
7.
OBJECTIVE: Both RhoA (Rho1) and polo-like kinase 1 (Plk1) are implicated in the regulation of cytokinesis, a cellular process that marks the division of cytoplasm of a parent cell into daughter cells after nuclear division. Cytokinesis failure is often accompanied by the generation of cells with an unstable tetraploid content, which predisposes it to chromosomal instability and oncogenic transformation. Several studies using lower eukaryotic systems demonstrate that RhoA and Plk1 are essential for mitotic progression and cytokinesis. MATERIALS AND METHODS: Physical and functional interactions between RhoA and Plk-1 were analyzed using subcellular localization of RhoA and Plk1 in HeLa cells by immunofluorescence and co-precipitation techniques, followed by Western blotting in RhoA transfected cells. RESULTS: Plk1 localizes to kinetochores as well as to spindle poles during prophase and metaphase; it translocates to the midbody during telophase. RhoA is also enriched at the midbody region during telophase and colocalizes with Plk1. Recombinant RhoA, expressed as a GFP fusion protein, is enriched in the nucleus of HeLa and U2OS cells. Ectopically expressed GFP-RhoA does not cause significant cell death, although there exist a group of cells that appear to exhibit a delay in mitotic exit or in impaired cytokinesis. CONCLUSION: Co-immunoprecipitation reveals that RhoA and Plk1 physically interact and that their interaction appears to be enhanced during mitosis. Given the role of RhoA and Plk1 in cytokinesis, our findings suggest that regulated activation of RhoA is important for cytokinesis and that Plk1 may alter activation of RhoA during mitotic cytokinesis. 相似文献
8.
The role of Polo-like kinase 1 in the inhibition of centrosome separation after ionizing radiation 总被引:3,自引:0,他引:3
Activation of the G2/M cell cycle checkpoint by DNA damage prevents cells from entering mitosis. Centrosome separation is initiated in G2 phase and completed in M phase. This critical process for cell division is targeted by G2/M checkpoint. Here we show that Plk1 signaling plays an important role in regulation of centrosome separation after DNA damage. Constitutively active Plk1 overrides the inhibition of centrosome separation induced by DNA damage. This inhibition is dependent on ATM, but not on Chk2 or Chk1. Nek2 is a key regulator of centrosome separation and is a target of Plk1 in blocking centrosome separation. We found that Plk1 can phosphorylate Nek2 in vitro and interacts with Nek2 in vivo. Down-regulation of Plk1 with RNA interference prevents Nek2-induced centrosome splitting. DNA damage is known to inhibit Plk1 activity. We propose that the DNA damage-induced inhibition of Plk1 leads to inhibition of Nek2 activity and thus prevents centrosome separation. 相似文献
9.
Plk1 has been essentially described as a critical regulator of many mitotic events. However, increasing evidence supports the notion that its molecular functions are not restricted to the cell cycle. In particular, recent reports suggest the existence of a molecular and functional link between Plk1 and the mammalian target of rapamycin (mTOR) pathway, which controls cell growth and proliferation via the raptor-mTOR (TORC1) and rictor-mTOR (TORC2) protein complexes. Herein, we have identified rapamycin-insensitive companion of mTOR (Rictor), a core component of mTORC2, as a new Plk1 substrate and have shown that Plk1 phosphorylates Rictor at Ser1162 in vitro and in vivo. Surprisingly, cells expressing the unphosphorylatable mutant (S1162A) of Rictor did not show any effect on well characterized canonical PI3K-mTOR pathway. However, we found that cells expressing the unphosphorylatable form of Rictor have an elevated level of mSin1 isoform (mSin1.5). Considering that mSin1.5-containing mTORC2 was reported to associate with stress signaling, we propose that phosphorylation of Rictor at Ser1162 by Plk1 might be involved in a novel signaling pathway by regulating the mSin1.5-defined mTORC2. 相似文献
10.
Checkpoint recovery upon completion of DNA repair allows the cell to return to normal cell cycle progression and is thus a crucial process that determines cell fate after DNA damage. We previously studied this process in Xenopus egg extracts and established Greatwall (Gwl) as an important regulator. Here we show that preactivated Gwl kinase can promote checkpoint recovery independently of cyclin-dependent kinase 1 (Cdk1) or Plx1 (Xenopus polo-like kinase 1), whereas depletion of Gwl from extracts exhibits no synergy with that of Plx1 in delaying checkpoint recovery, suggesting a distinct but related relationship between Gwl and Plx1. In further revealing their functional relationship, we found mutual dependence for activation of Gwl and Plx1 during checkpoint recovery, as well as their direct association. We characterized the protein association in detail and recapitulated it in vitro with purified proteins, which suggests direct interaction. Interestingly, Gwl interaction with Plx1 and its phosphorylation by Plx1 both increase at the stage of checkpoint recovery. More importantly, Plx1-mediated phosphorylation renders Gwl more efficient in promoting checkpoint recovery, suggesting a functional involvement of such regulation in the recovery process. Finally, we report an indirect regulatory mechanism involving Aurora A that may account for Gwl-dependent regulation of Plx1 during checkpoint recovery. Our results thus reveal novel mechanisms underlying the involvement of Gwl in checkpoint recovery, in particular, its functional relationship with Plx1, a well characterized regulator of checkpoint recovery. Coordinated interplays between Plx1 and Gwl are required for reactivation of these kinases from the G(2)/M DNA damage checkpoint and efficient checkpoint recovery. 相似文献
11.
During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus. 相似文献
12.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2422-2426
It has been recently proposed that AMP-activated protein kinase (AMPK) might indirectly promote the phosphorylation of MRLC (myosin II regulatory light chain) at Ser19 to regulate the transition from metaphase to anaphase and the completion of cytokinesis. Although these findings provide biochemical support for our earlier observations showing that the active form of the α catalytic AMPK subunit associates dynamically with essential mitotic regulators, several important issues remained unexplored. Does glucose starvation alter the ability of AMPK to bind to the mitotic apparatus and travel from centrosomes to the spindle midzone during mitosis and cytokinesis? Does AMPK activate MRLC exclusively at the cleavage furrow during cytokinesis? What is the mitosis-specific stimulus that activates the mito-cytokinetic AMPK/MRLC axis regardless of energy deprivation? First, we confirm that exogenous glucose deprivation fails to alter the previously described distribution of phospho-AMPKαThr172 in all of the mitotic phases and does not disrupt its apparent association with the mitotic spindle and other structures involved in cell division. Second, we establish for the first time that phospho-AMPKαThr172 colocalizes exclusively with Ser19-phosphorylated MRLC at the cleavage furrow of dividing cells, a previously unvisualized interaction between phospho-AMPKαThr172 and phospho-MRLCSer19 that occurs in cleavage furrows, intercellular bridges and the midbody during cell division that appears to occur irrespective of glucose availability. Third, we reveal for the first time that the inhibition of AMPK mitotic activity in response to PLK1 inhibition completely prevents the co-localization of phospho-AMPKαThr172 and phospho-MRLCSer19 during the final stages of cytokinesis and midbody ring formation. Because PLK1 inhibition efficiently suppresses the AMPK-mediated activation of MRLC at the cytokinetic cleavage furrow, we propose a previously unrecognized role for AMPK in ensuring that cytokinesis occurs at the proper place and time by establishing a molecular dialog between PLK1 and MRLC in an energy-independent manner. 相似文献
13.
Fucini RV Hanan EJ Romanowski MJ Elling RA Lew W Barr KJ Zhu J Yoburn JC Liu Y Fahr BT Fan J Lu Y Pham P Choong IC VanderPorten EC Bui M Purkey HE Evanchik MJ Yang W 《Bioorganic & medicinal chemistry letters》2008,18(20):5648-5652
A series of 2-amino-pyrazolopyridines was designed and synthesized as Polo-like kinase (Plk) inhibitors based on a low micromolar hit. The SAR was developed to provide compounds exhibiting low nanomolar inhibitory activity of Plk1; the phenotype of treated cells is consistent with Plk1 inhibition. A co-crystal structure of one of these compounds with zPlk1 confirms an ATP-competitive binding mode. 相似文献
14.
15.
Regulation of cell cycle progression is important for the maintenance of genome integrity, and Polo-like kinases (Plks) have been identified as key regulators of this process. It is well established that Polo-like kinase 1 (Plk1) plays critical roles in mitosis but little is known about its functions at other stages of the cell cycle. Here we summarize the functions of Plk1 during DNA replication, focusing on the molecular events related to Origin Recognition Complex (ORC), the complex that is essential for the initiation of DNA replication. Within the context of Plk1 phosphorylation of Orc2, we also emphasize regulation of Orc2 in different organisms. This review is intended to provide some insight into how Plk1 coordinates DNA replication in S phase with chromosome segregation in mitosis, and orchestrates the cell cycle as a whole. 相似文献
16.
Polo-like kinase1, a new target for antisense tumor therapy 总被引:9,自引:0,他引:9
Elez R Piiper A Giannini CD Brendel M Zeuzem S 《Biochemical and biophysical research communications》2000,269(2):352-356
The Polo-like kinase 1 (Plk1) is a highly conserved mitotic serine/threonine kinase which is commonly overexpressed in cancer cell lines. Plk1 positively regulates mitotic progression by activating the CDC25C-CDK1 amplification loop and by regulating late mitotic events, primarily the ubiquitin-dependent proteolysis. In the present study, an antisense strategy against Plk1 mRNA was developed to specifically inhibit cell proliferation of cancer cells in cell culture and in the nude-mouse tumor model. Among 41 phosphorothioate antisense oligodeoxynucleotides tested, the 20-mer JWG2000 strongly inhibited expression of Plk1 in cultured A549 cells, leading to loss of cell viability, and exhibited anti-tumor activity in nude mice A549 xenograft. JWG2000 did not inhibit growth and viability of primary human mesangial cells and human amnion fibroblasts. 相似文献
17.
Chen S Bartkovitz D Cai J Chen Y Chen Z Chu XJ Le K Le NT Luk KC Mischke S Naderi-Oboodi G Boylan JF Nevins T Qing W Chen Y Wovkulich PM 《Bioorganic & medicinal chemistry letters》2012,22(2):1247-1250
A series of pyrimidodiazepines was identified as potent Polo-like kinase 1 (PLK1) inhibitors. The synthesis and SAR are discussed. The lead compound 7 (RO3280) has potent inhibitory activity against PLK1, good selectivity against other kinases, and excellent in vitro cellular potency. It showed strong antitumor activity in xenograft mouse models. 相似文献
18.
Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells 总被引:2,自引:0,他引:2
Eckerdt F Yuan J Saxena K Martin B Kappel S Lindenau C Kramer A Naumann S Daum S Fischer G Dikic I Kaufmann M Strebhardt K 《The Journal of biological chemistry》2005,280(44):36575-36583
The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators. 相似文献
19.
Olivia Barton Steffen C. Naumann Ronja Diemer-Biehs Julia Künzel Monika Steinlage Sandro Conrad Nodar Makharashvili Jiadong Wang Lin Feng Bernard S. Lopez Tanya T. Paull Junjie Chen Penny A. Jeggo Markus L?brich 《The Journal of cell biology》2014,206(7):877-894
DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein–interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku−/− mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847. 相似文献