首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Micro-tidal wetlands are subject to strong seasonal variations of soil salinity that are likely to increase in amplitude according to climate model predictions for the Caribbean. Whereas the effects of constant salinity levels on the physiology of mangrove species have been widely tested, little is known about acclimation to fluctuations in salinity.

Aims and methods

The aim of this experiment was to characterize the consequences of the rate of increase in salinity (slow versus fast) and salinity fluctuations over time versus constant salt level. Seedling mortality, growth, and leaf gas exchange of three mangrove species, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle were investigated in semicontrolled conditions at different salt levels (0, 685, 1025, and 1370 mM NaCl).

Results

Slow salinity increase up to 685 mM induced acclimation, improving the salt tolerance of A. germinans and L. racemosa, but had no effect on R. mangle. During fluctuations between 0 and 685 mM, A. germinans and R. mangle were not affected by a salinity drop to zero, whereas L. racemosa took advantage of the brief freshwater episode as shown by the durable improvement of photosynthesis and biomass production.

Conclusions

This study provides new insights into physiological resistance and acclimation to salt stress. We show that seasonal variations of salinity may affect mangrove seedlings’ morphology and physiology as much as annual mean salinity. Moreover, more severe dry seasons due to climate change may impact tree stature and species composition in mangroves through higher mortality rates and physiological disturbance at the seedling stage.  相似文献   

2.

Background

Deforestation is one of the most ubiquitous forms of land degradation worldwide. Although remote sensing and aerial photographs can supply valuable information on land/use cover changes, they may not regularly be available for some tropical coasts (e.g., Cameroon estuary) where cloud cover is frequent. With respect to mangroves, researchers are now employing local knowledge as an alternative means of understanding forest disturbances. This paper was primarily aimed at assessing the mangrove forest products usage, along with the local people's perceptions on environmental changes, between Littoral (Cameroon estuary) and Southern (mouth of the Nyong River and Mpalla village) regions of Cameroon.

Methods

The data from both locations were obtained through conducting household interviews and field observations.

Results

In the Cameroon estuary (Littoral region), 69.23% of respondents (mostly elders) could distinguish two to four mangrove plants, whereas the informants (65.45%) in the mouth of the Nyong River and Mpalla village (mostly young people interviewed from the Southern region) are familiar with only one or two commonly found mangroves. Also, more respondents from the Cameroon estuary are depending on mangroves for fuelwood (Rhizophora spp.) and housing (Rhizophora spp., Avicennia germinans (L.) Stearn and Nypa fruticans (Thumb.) Wurmb.) purposes, in contrast to Nyong River mouth and Mpalla village. Although local people perceived wood extraction as a greater disruptive factor, there are several causes for mangrove depletion in the Cameroon estuary. Among others, over-harvesting, clear-felled corridors, sand extraction and housing were found important. Furthermore, a decline in mangrove fauna composition (in terms of fishery products) was recorded in the Littoral as well as Southern regions. However, the causes of such perceived negative changes were not similar in both cases.

Conclusions

Findings of this study highlight the need to improve sustainable management of the mangrove ecosystems through afforestation (in large impacted areas), selective removal of senescent tree stems and branches (in little damage stands), regulating sand extraction and housing activities, and creating awareness and law enforcement.
  相似文献   

3.
Along the west coast of South America mangroves are found only outside the area influenced by the cold Peruvian Current. At 6° S (near ‘Cerro Illescas’) the current turns west to the open sea in the direction of the Galapagos Islands. Dense mangrove vegetation with a tree height up to 15 m occurs only north of 3° 35′ S from the delta of the river Tumbes (Peru). At 3° 44′ S some small individuals of Rhizophora and at 5° 30′ S a small stand of Avicennia can be found. In the transition zone between 3° 35′ and 6° S no mangrove forest occurs. The reasons for the lack of mangal in the transition zone are:
  1. Evapotranspiration and atmospheric humidity show significant differences between the mangrove region and the transition zone. In this zone soil conditions like salinity, water and organic matter content and the geological structure can also be considered as inhibiting mangrove growth.
  2. Topographic conditions in this zone are not suitable for mangal and the lack of a regular annual flow from rivers provides a sharp limit for the existence of mangal in the delta of the river Tumbes. Nevertheless, cultivation of mangrove species south of the mangrove region is possible and seems promising.
  相似文献   

4.

Background and aims

(i) compare the concentrations of total polyphenols (TP) and condensed tannins (CT), and CT profiles in different organs of mature trees and seedlings of eight true mangrove species in Hong Kong; (ii) examine the antioxidant activities of CT and (iii) relate the non-enzymatic antioxidative defence system with the vertical zonation pattern of mangrove species.

Methods

Mature trees and seedlings of eight species were collected from a Hong Kong mangrove swamp to determine TP and CT concentrations and the antioxidant activities of CT.

Results

According to TP concentrations, the true mangrove species could be broadly classified into three groups, (i) Lumnitzera racemosa and Aegiceras corniculatum > (ii) Heritiera littoralis, Excoecaria agallocha, Bruguiera gymnorrhiza and Kandelia obovata > (iii) Acanthus ilicifolius and Avicennia marina. The last two are pioneer species in the most foreshore location. They also had significantly lower antioxidant activities, CT concentrations and different CT profiles than the other six species in mid- and low-tides.

Conclusions

Classification of the eight true mangrove species into three groups based on polyphenols was similar to their vertical zonation from land to sea. The relationships between these antioxidants and zonation should be further verified by transplantation studies.  相似文献   

5.

Purpose

Mangrove wetlands have experienced significant contaminant input such as copper (Cu), aggravated by rapid urban development. This study aimed to investigate the possible function of root permeability in metal detoxification.

Methods

Pot trials were conducted to evaluate the responses of root permeability in relation to metal (Cu) exposure in seedlings of two mangroves: Bruguiera gymnorrhiza and Rhizophora stylosa.

Results

Copper inhibited plant growth and root permeability of the two species significantly (due to decreases in root porosity, thickening of exodermis and increases in lignification), leading to a significant reduction in radial oxygen loss (ROL). A negative correlation between soil Cu and ROL from root tip was also observed. The observed metal uptake by excised roots further indicated that increased lignification would directly prevent excessive Cu from further entering into the roots.

Conclusions

In summary, the two mangroves reacted to Cu by producing an impermeable barrier in roots. Such an inducible barrier to ROL is likely to be an adaptive strategy against Cu toxicity. This study reveals new evidence of a structural adaptive strategy for metal tolerance by mangrove plants.  相似文献   

6.

Background and aims

The Bragança Peninsula, in northern Brazil is characterized by macrotides (4 m) and specific edaphic conditions, which determine the local mangrove forest’s development. This study, conducted during the dry season evaluated the spatial patterns of Rhizophora mangle and Avicennia germinans species across an inundation gradient.

Methods

Along a transect of 700 m, measurements of structure forest, soil moisture, porewater salinity, extractable phosphorus (extr.-P) in sediments, and phosphorus in the leaves (leaf-P) were conducted.

Result

The A. germinans (100 %) occurred in high intertidal (HI) zone. A. germinans (59 %) and R. mangle (41 %) co-occurred in mid intertidal (MI) zone, while R. mangle (58 %) predominated in low intertidal (LI) zone, followed by A. germinans (37 %) and Laguncularia racemosa (5 %). Covariance analysis (ANCOVA) indicated that salinity and soil moisture means are significantly different between the mangrove forests, but do not correlate with inundation frequency (IF). The means of extr.-P were significantly different in mangrove forests and correlated with IF and leaf-P.

Conclusion

The inundation frequency, the availability of P in the sediments, phosphorus in the leaves and interstitial salinity are all important factors contributing to the distribution of the mangrove tree species A. germinans and R. mangle on the Bragança Peninsula.  相似文献   

7.
Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs’ life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season.  相似文献   

8.
A multiproxy record comprising pollen, charcoal, loss on ignition and particle size analyses from two radiocarbon dated sediment cores from Klong Kone subdistrict on the western coast of the Gulf of Thailand provides insights on mangrove dynamics, environmental changes and human activities during the last 800 years. The mangroves were dominated by Rhizophora which indicates that the area has been influenced by the sea level from at least 820 cal bp until 720 cal bp. An intertidal area may have formed that supported mangrove development as part of an old shoreline during 820–720 cal bp. After 720 cal bp, mangroves decreased and were replaced by grasses, suggesting that a lower sea level caused the mangroves to grow closer to the sea until around 140 cal bp. Cereal pollen increased from 720 cal bp suggesting probable use of the shoreline for intensive cultivation. The mangroves were characterised by Avicennia, which increased toward the top of the 2 cores, suggesting that the mangroves then grew further inland, probably due to recent sea-level rise. Intensive human activity is recorded during the 20th century, as indicated by increased particle size, charcoal and carbonate content. At present, human activity in the area includes dams and construction as well as aquaculture.  相似文献   

9.

Key message

Mangroves in rapidly expanding Southeast Asian river deltas form floristically simple zones dominated by a few highly regenerative species adaptable or tolerant to rapid sedimentation and extensive river flooding.

Abstract

The size class distribution, community composition and spatial structure of five representative mangrove forests in the rapidly expanding Cimanuk river delta on Java were determined. These deltaic forests are species-poor (eight true mangrove species) and spatially segregated into three distinct floristic zones: (1) a fringing, low intertidal zone co-dominated by Avicennia marina and A. officinalis, with less abundant Bruguiera parviflora, Rhizophora apiculata, and R. mucronata; (2) a zone transitional between the low and mid intertidal in which Avicennia and Rhizophora spp. co-dominate; and (3) a mid intertidal zone dominated by R. mucronata and R. apiculata. Numerically dominated by seedlings (52,500–73,500 seedlings ha?1) and saplings (5,268–5,660 saplings ha?1), all five forests are relatively young and actively regenerating. Positive correlations of tree stem diameter and tree height with soil organic matter and P concentrations, salinity, the soil C/N ratio, pH, and silt/clay composition highlight the importance of soil factors in sustaining forest growth. The low diversity and relative structural simplicity of these rapidly growing and regenerating forests may be attributed to adaptation or tolerance to flooding and the rapid sedimentation and seaward expansion of the delta.  相似文献   

10.

Key message

High root productions, especially in the fine roots, estimated by ingrowth cores were confirmed in mangrove forests. The zonal variation in root production was caused by inundation regime and soil temperature.

Abstract

Mangrove forests have high net primary productivity (NPP), and it is well known that these trees allocate high amounts of biomass to their root systems. In particular, fine root production (FRP) comprises a large component of the NPP. However, information on root production remains scarce. We studied FRP in three zones (Avicennia, Rhizophora, and Xylocarpus) of a mangrove forest in eastern Thailand using ingrowth cores (0–30 cm of soil depth). The root biomass and necromass were periodically harvested from the cores and weighed during the one-year study. The FRP was determined by summation of the fine root biomass (FRB) and root necromass. The results showed that the FRB clearly increased in the wet and cool dry seasons. Magnitude of FRB in the Rhizophora and Xylocarpus zones was 1171.07 and 764.23 g/m2/30 cm, respectively. The lowest FRB (292.74 g/m2/30 cm) was recorded in the Avicennia zone locating on the river edge where there is a greater frequency of inundation than the other zones. Root necromass was high in the Rhizophora and Xylocarpus zones, and accumulated noticeably when soil temperatures rapidly declined during the middle of the wet season to cool dry season. However, root necromass in the Avicennia zone varied within a small range. We attributed the small accumulation of root necromass in the Avicennia zone to the relative high soil temperature that likely caused a high root decomposition rate. The average FRP (3.403–4.079 ton/ha/year) accounted for 74.4, 81.5, and 92.4 % of the total root production in the Avicennia, Rhizophora, and Xylocarpus zone, respectively. The root production and causative factors (i.e., soil temperature and inundation regime) are discussed in relation to the carbon cycle of a mangrove forest.
  相似文献   

11.

Key message

An outbreak of the western spruce budworm temporarily modifies cellular wood anatomy of stem wood in natural and mature Douglas-fir stands impacting wood quality properties.

Abstract

Western spruce budworm (Choristoneura occidentalis Freeman) is a widespread and destructive defoliator of commercially important coniferous forests in western North America. In British Columbia, Canada, Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is the most important and widely distributed host. Permanent sample plots were established at a number of locations in southern interior at the beginning of a severe western spruce budworm outbreak in the 1970s. Two of the sites were sampled in 2012 to determine whether modifications had occurred in the anatomical characteristics of stem wood formed during outbreak years. We determined that rings formed during the western spruce budworm 1976–1980 outbreak had a significantly lower proportion of latewood, reduced mean cell wall thickness and smaller radial cell diameters. While the cellular characteristics of the earlywood remained fairly constant, significant reductions in lumen area occurred in 1978 and 1979 at each site. Our study shows that western spruce budworm outbreaks not only reduce annual radial growth, but also temporarily modify cellular characteristics in latewood cells, which has implications for wood density and quality in Douglas-fir.  相似文献   

12.

Key Message

Morphological plasticity helps plants to cope to environmental conditions. Allometric responses of the mangrove Avicennia germinans to increasing salinity are easily detectable when focusing on the top height trees.

Abstract

Several studies show that mangrove trees possess high species- and site-related trait allometry, suggesting large morphological plasticity that might be related to environmental conditions, but the causes of such variation are not clearly understood and systematic quantification is still missing. Both aspects are essential for a mechanistic understanding of the development and functioning of forests. We analyzed the role of salinity in the allometric relations of the mangrove Avicennia germinans, using: (1) the top height trees (trees with the largest diameters at breast height, which reflect forest properties at the maximum use of resources); (2) the slenderness coefficient (which indicates competition and environmental conditions); and (3) the crown to DBH ratio. These standard tools for forest scientists dealing with terrestrial forests are suitable to analyze the plastic responses of mangroves to salinity. First, the top height trees help to recognize structural forest properties that are not detectable when studying the whole stand. Second, we found that at salinities above 55 ‰, trees are less slender and develop wider crowns in relation to DBH than when growing at lower salinities. Our results suggest a significant change in allometric traits in relation to salinity, and reflect the plastic responses of tree traits in response to environmental variation. Understanding the plastic responses of plants to their environment can help to better model, predict, and manage forests in changing environments.  相似文献   

13.
Holocene mangrove dynamics are reconstructed from pollen, sediment and radiocarbon analyses of three cores (ANR, BNR, CNR) located across a 20 km transect in the Rufiji Delta, Tanzania. At the base of the sediment sequence, dated to about 5600 cal. year b.p., the mangroves which are present suggest a low intertidal ecosystem in response to wet conditions and a higher sea level than at the present day. After around 5600 cal. year b.p. in core BNR, mangroves retreated seaward probably due to a lower sea level and drier environmental conditions. At around 4640 cal. year b.p., mangroves shifted landward suggesting a phase of sea level rise. In the late Holocene, mangroves became established at higher elevations of the Rufiji Delta, which is now a paddy field. Mangrove taxa decreased after 1170 cal. year b.p., suggesting drier conditions and less inundation frequency, possibly due to a lower sea level. Marked vegetation changes from mangroves to terrestrial vegetation occurred after around 750 cal. year b.p., possibly related to sea level regression and/or a desiccation phase recorded during the late Holocene. Paddy fields replaced mangroves in the landward part of the transect, reflecting an increase in human settlement in this area, a trend that continues to the present day. The recent decrease of mangrove species, particularly Rhizophora mucronata, could suggest less inundation by saline water and a lower sea level, although these changes may also be due to human activities during the last millennia as indicated by charcoal analysis.  相似文献   

14.
Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.  相似文献   

15.
We compared the mollusc assemblages of planted mono-specific Rhizophora mangroves of known different ages. As forest age increased, there was a shift in species composition, abundance and biomass of mollusc assemblages for all faunal types (infauna, epifauna and arboreal fauna). This shift was correlated with the changes in vegetation (increasing forest cover and above-ground biomass) and sediment characteristics (increasing organic matter and decreasing sand content). Some species dominate in young plantations (<10 years old; Pirenella cingulata) and in intermediate plantations (10–15 years old; Nerita polita), while other species only occur in mature plantations and natural mangrove stands (>15 years; Terebralia sulcata, Nerita planospira). The two former groups of species are mostly species of infaunal and epifaunal habitats, while the latter group is mainly composed of arboreal species. The shift in mollusc species composition and dominance may serve as a useful indicator of restoration patterns in planted mangroves.  相似文献   

16.
Keywords. Salt excretion in leaves of some mangrove species may serve as an important defense against fungal attack, reducing the vulnerability of typically high-density, monospecific forest stands to severe disease pressure. In field surveys of a Caribbean mangrove forest in Panama, Avicennia germinans suffered much less damage from foliar diseases than did Laguncularia racemosa or Rhizophora mangle. Similarly, Avicennia leaves supported the least superficial fungal growth, endophytic colonization, and diversity, followed by Laguncularia and Rhizophora. Host specificity of leaf-colonizing fungi was greater than expected at random. We hypothesize that the different salt tolerance mechanisms in the three mangrove species may differentially regulate fungal colonization. The mangroves differ in their salt tolerance mechanisms such that Avicennia (which excretes salt through leaf glands) has the highest salinity of residual rain water on leaves, Laguncularia (which accumulates salt in the leaves) has the greatest bulk salt concentration, and Rhizophora (which excludes salt at the roots) has little salt associated with leaves. The high salt concentrations associated with leaves of Avicennia and Laguncularia, but not the low salinity of Rhizophora, were sufficient to inhibit the germination of many fungi associated with mangrove forests.  相似文献   

17.
Sousa WP  Quek SP  Mitchell BJ 《Oecologia》2003,137(3):436-445
Current theory predicts that in low-density, seed-limited plant populations, seed predation will be more important than competition in determining the number of individuals that reach maturity. However, when plant density is high, competition for microsites suitable for establishment and growth is expected to have a relatively greater effect. This dichotomous perspective does not account for situations in which the risk of seed predation differs inside versus outside recruitment microsites. We report the results of a field experiment and sampling studies that demonstrate such an interaction between microsite quality and the risk of propagule predation in mangrove forests on the Caribbean coast of Panama, where it appears to play a key role in shaping the demography and dynamics of the mangrove, Rhizophora mangle. Rhizophora's water-borne propagules establish wherever they strand, but long-term sampling revealed that only those that do so in or near lightning-created canopy gaps survive and grow to maturity. These microsites afford better growth conditions than the surrounding understory and, as importantly, provide a refuge from predation by the scolytid beetle, Coccotrypes rhizophorae. This refuge effect was confirmed with a field experiment in which Rhizophora seedlings were planted at different positions relative to gap edges, from 5 m inside to 20 m outside the gap. Mortality due to beetle attack increased linearly from an average of 10% inside a gap to 72% at 20 m into the forest. The interaction between canopy disturbance and propagule predation may be having a large impact on the composition of our study forests. Being shade-tolerant, Rhizophora seedlings that escape or survive beetle attack can persist in the understory for years. However, the high rate of beetle-induced mortality effectively eliminates the contribution of advance regeneration by Rhizophora saplings to gap succession. This may explain why the shade-intolerant mangrove, Laguncularia racemosa, is able to co-dominate the canopy in low intertidal forests at our study sites.  相似文献   

18.

Background and Aims

Mangrove forests are globally important sites of carbon burial that are increasingly exposed to nutrient pollution. Here we assessed the response of soil respiration, an important component of forest carbon budgets, to nutrient enrichment over a wide range of mangrove forests.

Methods

We assessed the response of soil respiration to nutrient enrichment using fertilization experiments within 22 mangrove forests over ten sites. We used boosted regression tree (BRT) models to determine the importance of environmental and plant factors for soil respiration and its responsiveness to fertilizer treatments.

Results

Leaf area index explained the largest proportion of variation in soil respiration rates (LAI, 45.9 %) followed by those of site, which had a relative influence of 39.9 % in the BRT model. Nutrient enrichment enhanced soil respiration only in nine out of 22 forests. Soil respiration in scrub forests showed a positive response to nutrient addition more frequently than taller fringing forests. The response of soil respiration to nutrient enrichment varied with changes in specific leaf area (SLA) and stem extension, with relative influences of 14.4 %, 13.6 % in the BRT model respectively.

Conclusions

Soil respiration in mangroves varied with LAI, but other site specific factors also influenced soil respiration and its response to nutrient enrichment. Strong enhancements in aboveground growth but moderate increases in soil respiration with nutrient enrichment indicated that nutrient enrichment of mangrove forests has likely increased net ecosystem production.  相似文献   

19.

Background

Sundarbans is the largest chunk of mangrove forest and only tiger mangrove land in the world. Compared to the rich species diversity and uniqueness, very few studies have so far been conducted here, mainly due to its inaccessibility. This study explores water quality, density of biomass, species diversity, phytoplankton abundance and bacterial population of a tidal creek in Sunderban estuary during the post and pre monsoon period of 2008-09.

Results

Phytoplankton community was observed to be dominated by diatoms (Biacillariophyceae) followed by Pyrrophyceae (Dinoflagellates) and Chlorophyceae. A total of 46 taxa belonging to 6 groups were recorded. Other algal groups were Cyanophyceae, Euglenophyceae and Chrysophyceae. Species diversity was highest in summer (March) and lowest in winter season (November) in all the sample stations indicating its close correlation with ambient temperature. Species evenness was fairly high in all five stations throughout the study period. Present study indicated that dissolved oxygen, nutrients and turbidity are the limiting factors for the phytoplankton biomass. The estuary was in eutrophic condition (Chlorophyll-a ≥10 μg/L) in winter. During the month of May phytoplankton biomass declined and at high salinity level (21.2PSU) new phytoplankton species take over, which are definitely better resilient to the high saline environment. Bio-indicator species like Polykrikos schwartzil, Dinophysis norvegica and Prorocentrum concavum points to moderately polluted water quality of the estuary.

Conclusion

Eutrophication as well as presence of toxic Dinoflagellates and Cyanophyceae in the tidal creek of Sundarban estuary definitely revealed the deteriorated status of the water quality. The structure and function of the mangrove food web is unique, driven by both marine and terrestrial components. But little attention has been paid so far to the adaptive responses of mangrove biota to the various disturbances, and now our work unfolds the fact that marine status of Sundarban estuary is highly threatened which in turn will affect the ecology of the mangrove. This study indicates that ecosystem dynamics of the world heritage site Sundarban may facilitate bioinvasion putting a question mark on the sustainability of mangroves.  相似文献   

20.
Coarse woody debris (CWD) plays an important role in long-term carbon storage in forest ecosystems. However, few studies have examined CWD in mangrove forests. A secondary mangrove forest on an estuary of the Trat River showed different structures along vegetation zones ranging from the river’s edge to inland parts of the forest (the SonneratiaAvicennia, Avicennia, Rhizophora, and Xylocarpus zones, respectively). The mass distribution of CWD stock in downed wood and standing dead trees along these vegetation zones was evaluated. Most of the CWD stock in the SonneratiaAvicennia and Avicennia zones was found in downed wood, while it mainly accumulated in standing dead trees in the Rhizophora and Xylocarpus zones. The total mass of CWD stock that accumulated in each zone ranged from 1.56–8.39 t ha?1, depending on the forest structure and inundation regimes. The annual woody debris flux in each zone was calculated by summing the necromass (excluding foliage) of dead trees and coarse litter from 2010 to 2013. The average woody debris flux was 5.4 t ha?1 year?1, and its zonal variation principally depended on the necromass production that resulted from forest succession, high tree-density, and lightning. Over all the zones, the above- and below-ground net primary production (ANPP and BNPP, respectively) was estimated at 18.0 and 3.6 t ha?1 year?1, respectively. The magnitude of BNPP and its contribution to the NPP was markedly increased when fine root production was taken into consideration. The contribution of the woody debris flux without root necromass to the ANPP ranged from 12 to 28%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号