首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.  相似文献   

2.
U. Irmler 《Plant and Soil》1982,67(1-3):355-358
In 1976/77 energy flow and nutrient cycling in an Amazonian blackwater inundation forest were studied. The major part of the litter biomass turnover occurred during the emersion phase. 95% decomposition rate for nitrogen was measured with 15 mm mesh litter bags and was 4.7 years. Over 30 per cent of the annual leaf-fall was decomposed by soil-dwelling arthropods.  相似文献   

3.
In a 1-ha plot in an unflooded moist tropical forest in Reserva de Producción Faunística Cuy abeno in Amazonian Ecuador, 96 species of vascular herbaceous plants were found rooted in the ground; they were all perennials; 25 species were pteridophytes, representing 11 families, 71 species (14 families) were angiosperms. Araceae, Marantaceae, and Poaceae were the most important angiosperm families. The total abundance of the ground herbs was 10 960 individuals, the total cover was 250 m2, or 2.5% of the 1-ha plot. Species of ground herbs exhibit two major life-form strategies: the obligate terrestrial species (59%) are restricted to the ground; the facultative terrestrial species (41 %) have climbing and epiphytic individuals as well. Difference in life-form strategy as well as difference in edaphic specialization along a topographic gradient are two factors that may enhance the number of coexisting species within the 1-ha sample plot.  相似文献   

4.
Abstract. Pteridophyta and Melastomataceae were studied in an area of non-flooded (tierra firme) rain forest in Peruvian Amazonia, close to the village of Mishana (River Nanay, in the vicinity of Iquitos City). The general objective of the study was to establish a method for rapidly documenting changes in the floristic composition among and within rain forests in geologically different areas. More specifically, the changes in the plant communities were documented along an edaphic and topographic gradient from clay soil on level ground to quartzitic sand on a hill top. Two 5-m-wide, parallel transects were established 50 m apart. A total of 40 species of pteridophytes were found; 18 of these were confined to clayey soil and 11 to sandy soil. The total number of Melastomataceae on the transects was 22, and 14 of these were confined to clayey soil while only two were confined to sandy soil. Further differences in the abundance of many species correlated with drainage conditions and the accumulation of organic matter on the soil surface. Cluster analyses were made using both edaphic and floristic criteria, and in all cases the transects could be divided into distinct sections. Both transects gave rather similar results, and therefore it was concluded that the chosen transect width was sufficient to document the prevalent floristic patterns.  相似文献   

5.
Understanding patterns of speciesl habitat use and their response to dramatic changes in habitat constitutes a basis for sound conservation practice. This study examined use of breeding habitat by two rainforest-breeding frog species near primary forest edge. Nine artificial breeding pools were established along each of three transects perpendicular to continuous primary forest near Manaus, Brazil. Five frog species bred in the pools over the six-month monitoring period. For the two most abundant species, patterns of habitat use were independent of proximity to forest edge. Also,Epipedobates femoralis used pools outside the forest, in secondary growth, at the same frequency as pools inside the forest.Osteocephalus taurinus did not breed outside primary forest. These results have clear implications for conservation biology: (i) buffer zones around isolated reserves, to counter possible negative edge effects on habitat, are unnecessary for these frog species, and (ii) secondary growth habitat, which is not natural breeding habitat forE. femoralis, could serve as a source of colonists for emigration into new areas and does not represent a barrier to dispersal for this species. These results argue against generalization of edge effects for different taxa.  相似文献   

6.
The spatial heterogeneity of resource availability is a major driver of biodiversity patterns. Some environmental conditions and resources are characterized by large‐scale patterns of variation within the landscape. Clumped local discontinuities or discrete elements also increase spatial heterogeneity, promoting local ‘biodiversity hot spots’ by modifying habitat characteristics and promoting plant–animal interactions. Clay licks are faunal attractors owing to their role in the nutritional ecology of the user species; nevertheless, the effect of their presence on the surrounding vegetation has been poorly quantified. Here, we use data from 100 × 10 m transects and evaluate the effects of the presence of clay licks on forest diversity and structure at local and landscape scales. In clay lick areas, there was a higher abundance of certain species, which helps to homogenize species composition between localities counteracting the natural distance‐decay of compositional similarity between transects without clay lick influence (controls). Compared to control sites, clay lick′s forests had higher palm densities, shorter but more variable individuals in the canopy and understory, a thinner canopy layer, and denser herbaceous and ground level covers. These differences were found along the whole length of transects in both sampled areas types. These results reveal that the presence of discrete elements (i.e., clay licks) may help to explain the compositional and structural heterogeneity of Amazonian forests influencing ecological processes such as seed dispersal and trampling. These considerations may be relevant for other biomes where clay licks are present and give weight to their inclusion in conservation initiatives in tropical forests.  相似文献   

7.
Terborgh  J.  Losos  E.  Riley  M. P.  Riley  M. Bolaños 《Plant Ecology》1993,107(1):375-386
We studied the pre-germination loss of seeds to invertebrate and vertebrate seed predators of 5 species of Amazonian trees (Astrocaryum macrocalyx—Palmae; Bertholletia excelsa—Lecithydaceae; Calatola venezuelana—Icacinaceae; Dipteryx micrantha—Leguminosae (Papilionoidae); Hymenaea courbaril-Leguminosae (Caesalpinoidae)). These five species were selected from a large tree flora on several criteria. All possess large (3–10 cm) well-protected seeds that might plausibly be attractive to mammalian seed predators. The reproductive biology of three of the species, or close congeners, had been studied elsewhere in the Neotropics (Astrocaryum, Dipteryx, Hymenaea); one is important to the economy of southeastern Peru (Bertholletia); and one, despite large and apparently edible seeds, appeared to suffer no pre-germination loss to predators (Calatola). We conducted the research in mature forests in the Manu National Park of southeastern Peru where mammal densities are unperturbed by human activities. Densities of adult trees of the five species in our area range from very high (>30 per ha: Astrocaryum) to very low (1 per ha: Hymenaea).Loss of seeds to all causes, and to mammalian seed predators in particular, was determined for seeds placed in 2-square meter mammal exclosures and in open controls located at 10 m (near) and 50 m (far) from a large mature individual of the target species (with minor variations in the design for Astrocaryum and Calatola). The exclosures were of two types: impermeable—designed to exclude all mammals, but not invertebrate seed predators, and semipermeable—designed to admit small (<500 g), but not large mammals. Experimental and control plots were stocked with apparently viable seeds during the dry-wet transition period (October–November) and scored one year later.A significant distance effect (higher predation near vs far from a large conspecific adult) was found in only one of the species (Astrocaryum), the only one to be attacked with high frequency by invertebrate seed predators. The absence of any detectable distance effect attributable to mammals suggests that mammals, over the course of a year, thoroughly search the forest floor for seeds. Invertebrates may thus be responsible for most pre-germination distance (density) effects. With respect to the treatments, we found three qualitatively distinct results: seeds of three species (Astrocaryum, Bertholletia, Dipteryx) were significantly protected by the impermeable, but not semipermeable exclosures, implicating small mammals in seed loss; the seeds of one species (Hymenaea) were significantly protected by exclosures of both types, implicating large mammals; and the seeds of one species (Calatola) exhibited 100% survival, whether or not protected by exclosures.The importance of large mammals as seed predators is generally underestimated in these experiments because semipermeable exclosures may serve as foraging reserves for small mammals. Finally, we noted no relationship between the intensity of mammalian seed predation (as suggested by the survival of unprotected seeds) and the abundance of adults of the five species in the environment. The diversity of results obtained for the five species reveals that large-seeded tropical trees may display a wide range of demographic patterns, and points to the likely importance of post-germination bottlenecks in the population biology of many species, even those that may experience severe pre-germination seed loss.  相似文献   

8.
9.
10.
Dispersal of Amazonian birds in continuous and fragmented forest   总被引:1,自引:0,他引:1  
Many ecologists believe birds disappear from tropical forest fragments because they are poor dispersers. We test this idea using a spatially explicit capture data base from the Biological Dynamics of Forest Fragments Project near Manaus, Brazil. We measure bird movements directly, over relatively large scales of space and time, both before and after landscape fragmentation. We found that species which disappear from fragments move extensively between plots before isolation, but not after, and often disperse to longer distances in continuous forest than in fragmented forest. Such species also preferentially emigrate from smaller to larger fragments, showing no preference in continuous forest. In contrast, species that persist in fragments are generally less mobile, do not cross gaps as often, yet disperse further after fragmentation than before. 'Heavy tailed' probability models usually explain dispersal kernels better than exponential or Gaussian models, suggesting tropical forest birds may be better dispersers than assumed with some individuals moving very long distances.  相似文献   

11.
Two microorganisms isolated from Amazonian forest soil samples and identified as Candida tropicalis and Alcaligenes faecalis were capable of degrading phenol (16 and 12 mM, respectively) at high salt concentrations (15% and 5.6%, respectively). Chromatographic and enzymatic studies revealed that each microorganism cleaved phenol at the ortho position with total phenol mineralization. 14C-phenol mineralization assays showed that both microorganisms assimilated about 30% of the total label. No phenol degradation metabolite (i.e., catechol, cis, cis-muconic acid) was detected in the intercellular medium. The presence of phenol hydroxylase (EC 1.14.13.7) and catechol 1,2-dioxygenase (EC 1.13.11.1) extracellular activity suggested that these microorganisms may secrete these enzymes into the extracellular medium. Journal of Industrial Microbiology & Biotechnology (2000) 24, 403–409. Received 02 November 1999/ Accepted in revised form 08 March 2000  相似文献   

12.
Accurately describing biodiversity in tropical regions such as Amazonia is difficult because of insufficient morphological inventories and the lack of studies on the distribution of genetic diversity. Aquatic organisms from Amazonian flooded forests are generally expected to move laterally along the forests during the annual inundation cycle, a behaviour that should promote admixture of populations and reduce within‐drainage speciation. We used an unprecedented fine‐scale sampling effort and multiple DNA markers to quantify region‐wide population differentiation in an Amazonian floodplain forest specialist, the black‐wing hatchet fish Carnegiella marthae ( Myers, 1927 ). Our study revealed three previously unsuspected and ancient cryptic species of black‐wing hatchet fish in the Rio Negro floodplain (RNF), in central Amazonia. Two species produce occasional first‐generation hybrids. The third and rarer species, although found in extreme sympatry with another species, appears to be reproductively isolated, and also differs in external morphology and dentition. Our findings have important implications for guiding conservation management because C. marthae is harvested commercially in the RNF ornamental fishery. They also suggest that the diversity of Amazonian ichthyofauna is vastly underestimated, including that found in landscapes lacking contemporary barriers to account for population divergence and speciation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 391–403.  相似文献   

13.
14.
15.
16.
17.
We investigated the effects of forest fragmentation on bird assemblages in an Amazonian savannah landscape with forest fragments that have been isolated for more than 100 years. The study was conducted in areas surrounding the village of Alter do Chão (2°31′S, 55°00′W), Santarém, Brazil. Bird surveys and measurements of tree density were undertaken in 25 areas, with 19 plots in forest fragments of different sizes and six in an area of continuous forest. Data on forest‐fragment size, perimeter, and isolation were obtained from a georeferenced satellite image. Variation in number of bird species recorded per plot was not related to vegetation structure (tree density). The number of bird species recorded per plot increased significantly only with fragment area, but was not influenced by fragment shape or degree of isolation, even when considering species from the savannah matrix in the analysis. Fragments had fewer rare species. Multivariate ordination analyses (multiple dimensional scaling, [MDS]) indicated that bird species composition changed along a gradient from small to large forest fragments and continuous‐forest areas. In the Amazonian savannah landscapes of Alter do Chão, the organization and composition of bird assemblages in forest fragments are affected by local long‐term forest‐fragmentation processes. Differences in the number of bird species recorded per plot and assemblage composition between forest fragments and continuous forest were not influenced by forest structure, suggesting that the observed patterns in species composition result from the effects of fragmentation per se rather than from preexisting differences in vegetation structure between sites. Nevertheless, despite their long history of isolation, the forest fragments still preserve a large proportion (on average 80%) of the avifauna found in continuous‐forest areas. The fragments at Alter do Chão are surrounded by natural (rather than planted) grassland, with many trees in the savannah matrix and the landscape has vast areas covered by forest, which may have helped to ameliorate the influences of forest fragmentation.  相似文献   

18.
The relative contribution of gross primary production and ecosystem respiration to seasonal changes in the net carbon flux of tropical forests remains poorly quantified by both modelling and field studies. We use data assimilation to combine nine ecological time series from an eastern Amazonian forest, with mass balance constraints from an ecosystem carbon cycle model. The resulting analysis quantifies, with uncertainty estimates, the seasonal changes in the net carbon flux of a tropical rainforest which experiences a pronounced dry season. We show that the carbon accumulation in this forest was four times greater in the dry season than in the wet season and that this was accompanied by a 5% increase in the carbon use efficiency. This seasonal response was caused by a dry season increase in gross primary productivity, in response to radiation and a similar magnitude decrease in heterotrophic respiration, in response to drying soils. The analysis also predicts increased carbon allocation to leaves and wood in the wet season, and greater allocation to fine roots in the dry season. This study demonstrates implementation of seasonal variations in parameters better enables models to simulate observed patterns in data. In particular, we highlight the necessity to simulate the seasonal patterns of heterotrophic respiration to accurately simulate the net carbon flux seasonal tropical forest.  相似文献   

19.
A quantitative inventory of trees and lianas was conducted (1) to compare floristic composition, diversity and stem density variation between three different forest types (tierra firme, floodplain and swamp), and (2) to analyse the relationships between floristic similarity and forest structure in two regions ~60 km apart in Yasuní National Park, Amazonian Ecuador. A total of 1,087 species with a diameter at breast height ≥ 2.5 cm were recorded in 25 0.1-ha plots. Tierra firme was the habitat with the highest number of species and stem density for trees and lianas, followed by floodplain and swamp in both regions. Two hypotheses that have been independently proposed to describe plant distribution in tropical rain forests, together explain species spatial distribution in this study. The fact that the 30 most important species per forest type (totalling 119 species) accounted for 48.2% of total individuals supports the oligarchy hypothesis. Likewise, 28 out of these 119 species are reported as restricted to a single forest type, which supports the environmental-determinism hypothesis. In general, both canopy and understorey trees and lianas showed rather similar floristic patterns across different forest types and regions.  相似文献   

20.
Deuterium-labeled water was used to study the effect of the Tapajós Throughfall Exclusion Experiment (TTEE) on soil moisture movement and on depth of water uptake by trees of Coussarea racemosa, Sclerolobium chrysophyllum, and Eschweilera pedicellata. The TTEE simulates an extended dry season in an eastern Amazonian rainforest, a plausible scenario if the El Ni?o phenomenon changes with climate change. The TTEE excludes 60% of the wet season throughfall from a 1-ha plot (treatment), while the control 1-ha plot receives precipitation year-round. Mean percolation rate of the label peak in the control plot was greater than in the treatment plot during the wet season (0.75 vs. 0.07 m/mo). The rate was similar for both plots during the dry season (ca. 0.15 m/mo), indicative that both plots have similar topsoil structure. Interestingly, the label peak in the control plot during the dry season migrated upward an average distance of 64 cm. We show that water probably moved upward through soil pores-i.e., it did not involve roots (hydraulic lift)-most likely because of a favorable gradient of total (matric + gravitational) potential coupled with sufficient unsaturated hydraulic conductivity. Water probably also moved upward in the treatment plot, but was not detectable; the label in this plot did not percolate below 1 m or beyond the depth of plant water uptake. During the dry season, trees in the rainfall exclusion plot, regardless of species, consistently absorbed water significantly deeper, but never below 1.5-2 m, than trees in the control plot, and therefore may represent expected root function of this understory/subcanopy tree community during extended dry periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号