首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an emerging scientific need for reliable tools for monitoring membrane protein transport. We present a methodology leading to the reconstitution of efflux pumps from the Gram-negative bacteria Pseudomonas aeruginosa in a biomimetic environment that allows for an accurate investigation of their activity of transport. Three prerequisites are fulfilled: compartmentation in a lipidic environment, use of a relevant index for transport, and generation of a proton gradient. The membrane protein transporter is reconstituted into liposomes together with bacteriorhodopsin, a light-activated proton pump that generates a proton gradient that is robust as well as reversible and tunable. The activity of the protein is deduced from the pH variations occurring within the liposome, using pyranin, a pH-dependent fluorescent probe. We describe a step-by-step procedure where membrane protein purification, liposome formation, protein reconstitution, and transport analysis are addressed. Although they were specifically designed for an RND transporter, the described methods could potentially be adapted for use with any other membrane protein transporter energized by a proton gradient.  相似文献   

2.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning alpha-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of "the cation" in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation相似文献   

3.
Li Q  Sun Q  Zhao W  Wang H  Xu D 《Biochimica et biophysica acta》2000,1466(1-2):260-266
A strain of extremely salt-loving halobacteria Halobacterium species xz515 from a salt lake in Tibet was isolated. SDS-polyacrylamide gel electrophoresis shows that there is only one protein on claret membrane, which is the same membrane fraction as purple membrane from Halobacterium salinarum, with a molecular weight close to bacteriorhodopsin (br). The purified retinal containing protein from xz515 has an absorption peak at around 550 nm. These facts indicate that it is a br-like protein. The partial sequence determination [H. Wang et al., Chin. Sci. Bull., 45 (2000)] shows that this br-like protein belongs to the archaerhodopsin family. The measurements of light-induced medium pH change in intact cells and cell envelope vesicles of xz515 suggest that this type of archaerhodopsin has a proton pumping function. However, the study about the dynamics of pumped protons across the membrane reveal that the proton release and proton uptake is in reverse order compared to br. The probable reason, attributing to regulating the rate of proton release is discussed.  相似文献   

4.
Mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was purified by a novel procedure involving fast protein liquid chromatography and characterized with respect to molecular and catalytic properties. The method is reproducible, gives highly pure transhydrogenase as judged by silver staining, and can be modified to produce large amounts of pure transhydrogenase protein suitable for e.g. sequencing and other protein chemical studies. Transhydrogenase purified by fast protein liquid chromatography is reconstitutively active and pumps protons as indicated by an extensive quenching of 9-aminoacridine fluorescence. Under conditions which generate a proton gradient in the absence of a membrane potential the activity of reconstituted transhydrogenase is close to zero indicating a complete and proper incorporation in the membrane and a preferential regulation of the enzyme by a proton gradient rather than a membrane potential. Treatment of reconstituted transhydrogenase with N,N-dicyclohexylcarbodiimide results in an inhibition of proton pump activity without an effect on uncoupled catalytic activity, suggesting that proton translocation and catalytic activities are not obligatory linked or that this agent separates proton pumping from the catalytic activity.  相似文献   

5.
Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.  相似文献   

6.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning α-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of “the cation” in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation<monovalent amine anesthetic cation<divalent metal cation. We found that organic cations such as the amine anesthetics can also regenerate the proton pump in the bR protein. The inhibition of proton transport in the bR protein by the anesthetic cations was elucidated using the wild type, the E204Q and the D96N mutated bRs. The hydrophobic interaction of the amine anesthetics with the bR protein plays an important part in inhibiting the bR proton pump.  相似文献   

7.
In developing a reliable in vitro system for translocating bacterial proteins, we found that the least dense subfraction of the membrane of Escherichia coli was superior to the total inner membrane, both for a secreted protein (alkaline phosphatase) and for an outer membrane protein (OmpA). Compounds that eliminated the proton motive force inhibited translocation, as already observed in cells; since protein synthesis continued, the energy for translocation appears to be derived from the energized membrane and not simply from ATP. Treatment of the vesicles with protease, under conditions that did not interfere with subsequent protein synthesis, also inactivated them for subsequent translocation. We conclude that export of some proteins requires protein-containing machinery in the cytoplasmic membrane that derives energy from the proton motive force.  相似文献   

8.
Molecules of influenza matrix protein 2 (M2) are organized in tetramers that constitute a well-conserved virion component and also form proton channels in the plasma membrane of infected cells. In this report we demonstrate that influenza M2 protein is cytopathic in vitro for mammalian cells. An M2 point-mutant (M2pm) protein was constructed that contained amino acid changes designed to block the proton channel via introduction of large hydrophobic residues. This mutant was significantly less toxic upon transient transfection in vitro than the wild-type M2 (M2wt). To assess the possible correlation between M2 cytotoxicity and its proton channel activity, we monitored changes in mitochondria membrane potential induced by M2wt and M2pm. M2wt rapidly decreased mitochondria membrane potential reflecting the transmembrane proton gradient, while M2pm was markedly less efficient. Thus, M2 is cytotoxic for mammalian cells, likely via its proton channel activity and may therefore contribute to influenza pathogenesis through this previously unknown mechanism.  相似文献   

9.
The human voltage‐gated proton channel (Hv1) is a membrane protein consisting of four transmembrane domains and intracellular amino‐ and carboxy‐termini. The protein is activated by membrane depolarization, similar to other voltage‐sensitive proteins. However, the Hv1 proton channel lacks a traditional ion pore. The human Hv1 proton channel has been implicated in mediating sperm capacitance, stroke, and most recently as a biomarker/mediator of cancer metastasis. Recently, the three‐dimensional structures for homologues of this voltage‐gated proton channel were reported. However, it is not clear what artificial environment is needed to facilitate the isolation and purification of the human Hv1 proton channel for structural study. In the present study, we generated a chimeric protein that placed an enhanced green fluorescent protein (EGFP) to the amino‐terminus of the human Hv1 proton channel (termed EGFP‐Hv1). The chimeric protein was expressed in a baculovirus expression system using Sf9 cells and subjected to detergent screening using fluorescence‐detection size‐exclusion chromatography. The EGFP‐Hv1 proton channel can be solubilized in the zwitterionic detergent Anzergent 3–12 and the nonionic n‐dodecyl‐β‐d ‐maltoside (DDM) with little protein aggregation and a prominent monomeric protein peak at 48 h postinfection. Furthermore, we demonstrate that the chimeric protein exhibits a monomeric protein peak, which is distinguishable from protein aggregates, at the final size‐exclusion chromatography purification step. Taken together, we can conclude that solubilization in DDM will provide a useable final product for further structural characterization of the full‐length human Hv1 proton channel.  相似文献   

10.
Escherichia coli phage-shock protein A (PspA), a 25.3 kDa peripheral membrane protein, is induced under the membrane stress conditions and is assumed to help maintain membrane potential. Here, we report that purified PspA, existing as a large oligomer, is really able to suppress proton leakage of the membranes. This was demonstrated for membrane vesicles prepared from the PspA-lacking E. coli mutants, and for membrane vesicles damaged by ethanol and Triton X-100 prepared from the mutant and the wild-type cells. PspA also suppressed proton leakage of damaged liposomes made from E. coli total lipids. Furthermore, we found that PspA bound preferentially to liposomes containing phosphatidylserine and phosphatidylglycerol. All these effects were not observed for monomer PspA that was prepared by refolding of urea-denatured PspA. These results indicate that oligomers of PspA bind to membrane phospholipids and suppress proton leakage.  相似文献   

11.
王开彬  吴敏 《生命科学》2002,14(2):77-80
菌紫质(bR)是嗜盐菌紫膜中的唯一蛋白,具有光驱动的质子泵功能,迄今为止对于光循环和质子泵的具体分子机理仍未弄清楚,作者概述了近几年来关于bP质子泵机理的研究进展,介绍了两个较新的模型。  相似文献   

12.
The rate of proton extrusion by whole cells of Rhodospirillum rubrum is constant on a bacteriochlorophyll basis only above cellular bacteriochlorophyll concentrations of about 10 nmol bacteriochlorophyll per mg cell protein. At specific bacteriochlorophyll cellular levels below this value, the rate of proton extrusion per bacteriochlorophyll increases. Correspondingly, membrane preparations isolated from these cells exhibit increases in the rate of proton uptake on a pigment basis. Concomitant with variations in the rates of proton extrusion by whole cells, light energy fluxes for saturating this process also vary. A fair proportionality between maximum rates of proton extrusion of whole cells and the bacteriochlorophyll cellular levels above 10 nmol per mg protein indicates that the degree of continuity of intracytoplasmic membranes and of the cytoplasmic membrane remains largely constant.  相似文献   

13.
In higher plants, the plasma membrane proton pump (H(+)-ATPase) is encoded by a surprisingly large multigene family whose members are expressed in different tissues. Using an 18-amino acid epitope tag derived from the animal oncogene c-Myc, we have performed immunocytolocalization measurements of the protein expressed by one member of this family, AHA3 (Arabidopsis H(+)-ATPase isoform 3). Immunofluorescence studies with tissue sections of transgenic plants have revealed that c-Myc-tagged AHA3 is restricted to the plasma membrane of phloem companion cells, whereas other AHA isoproteins are more widely distributed in the plasma membrane of other cell types. Electron microscopy with immunogold-labeled tissue sections suggests that there is a high concentration of proton pumps in the plasma membrane of companion cells but a much lower concentration in the plasma membrane of sieve elements. Due to plasmodesmata connecting the plasma membrane of these two adjacent cell types, it is likely that the proton motive force generated by the proton pump in companion cells can serve to power the uptake of sugar by proton-coupled symporters in either the companion cell or sieve element cell. The abundance of the proton pump in the plasma membrane of companion cells supports an apoplastic model for phloem loading in which the metabolic energy that drives sugar uptake is consumed by AHA3 at the companion cell plasma membrane. These experiments with a genetically altered integral plasma membrane protein demonstrate the utility of using a short c-Myc sequence as an epitope tag in Arabidopsis. Furthermore, our results demonstrate that, using genes encoding individual members of a gene family, it is possible to label plasma membrane proteins immunologically in specific, differentiated cell types of higher plants.  相似文献   

14.
Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential ('proton-motive force'), either by transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by transmembrane proton transfer. Here we provide the first evidence that both of these mechanisms are combined in the case of a specific respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes, so as to facilitate transmembrane electron transfer by transmembrane proton transfer. We also demonstrate the non-functionality of this novel transmembrane proton transfer pathway ('E-pathway') in a variant QFR where a key glutamate residue has been replaced. The 'E-pathway', discussed on the basis of the 1.78-Angstrom-resolution crystal structure of QFR, can be concluded to be essential also for the viability of pathogenic varepsilon-proteobacteria such as Helicobacter pylori and is possibly relevant to proton transfer in other dihaem-containing membrane proteins, performing very different physiological functions.  相似文献   

15.
We have studied the composition of ATP-driven proton pumps from bovine heart mitochondria and have reconstituted the oligomycin-sensitive ATPase complex from its individual components. The complex contains 9 to 10 subunits of which 5 are assembled in the soluble F1 protein, 2 are required for the attachment of F1 to the membrane and 2 form the proton channel within the membrane. With the help of information obtained from studies of the chloroplast and the bacterial proton pumps, we can tentatively assign a function to each of the subunits of the pump. The position of F1 outside of the membrane seen in electron micrographs of negatively stained preparations, does not appear to be an artifact. Evidence from immunological studies, chemical derivatizations as well as further electron microscopy (positive staining and freeze-etching), support this statement. We describe in this paper a 28 000-dalton polypeptide which has been isolated from the mitochondria membrane and is required for the reconstitution of oligomycin-sensitive ATPase and 32Pi-ATP exchange activity. We propose a mechanism of action of the proton pump in which the key energy-yielding reaction is the binding of Mg2+ to the protein. The function of the proton gradient is to displace Mg2+ from this site to permit cyclic repetition of the binding process. Essential for this scheme is the cyclic opening and closing of the proton channel. We have outlined our present approaches to test this hypothesis.  相似文献   

16.
Recent studies of the photochemistry of wild type and mutant bacteriorhodopsins, their proton release and uptake kinetics, and their X-ray diffraction structure have suggested a hypothesis for the way energy is coupled in this light-driven proton pump. The first and critical step in converting light energy to a vectorial proton potential is the transfer of the Schiff base proton to D85 which causes dissociation of the Schiff base-counterion complex. Removal of this primarily coulombic interaction destabilizes the protein structure, and results in transition to an alternative conformation in which the two proton conduction pathways between the active site and the membrane surfaces are reorganized. Recovery of the initial charge state of the Schiff base and D85 must therefore occur through a series of unidirectional proton transfers that create a transmembrane electrochemical proton gradient. Passage of the transported proton through the two peripheral protein domains appears to utilize hydrogen bonded networks containing aspartate, arginine and bound water. This kind of mutual interaction between the active site and the protein conformation that determines the conductive pathways to the two membrane surfaces may have relevance to ion pumps in general.  相似文献   

17.
Protonated networks of internal water molecules appear to be involved in proton transfer in various integral membrane proteins. High-resolution x-ray studies of protein crystals at low temperature deliver mean positions of most internal waters, but only limited information about fluctuations within such H-bonded networks formed by water and residues. The question arises as to how water molecules behave inside and on the surface of a fluctuating membrane protein under more physiological conditions. Therefore, as an example, long-time molecular dynamics simulations of bacteriorhodopsin were performed with explicit membrane/water environment. Based on a recent x-ray model the bacteriorhodopsin trimer was inserted in a fully solvated 16 x 16 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-bilayer patch, resulting in a system of approximately 84,000 atoms. Unrestrained molecular dynamics calculations of 5 ns were performed using the GROMACS package and force field. Mean water densities were computed to describe the anisotropic distribution of internal water molecules. In the whole protein two larger areas of higher water density are identified. They are located between the central proton binding site, the Schiff base, and the extracellular proton release site. Separated by Arg-82 these water clusters could provide a proton release pathway in a Grotthus-like mechanism as indicated by a continuum absorbance change observed during the photocycle by time-resolved Fourier transform infrared spectroscopy. Residues are identified which are H-bonded to the water clusters and are therefore facilitating proton conduction. Their influence on proton transfer via the H-bonded network as indicated by the continuum absorbance change is predicted. This may explain why several site-directed mutations alter the proton release kinetics without a direct involvement in proton transfer.  相似文献   

18.
Three possible mechanisms by which different levels of thyroid hormones in rats might cause the observed sevenfold change in the apparent proton permeability of the inner membrane of isolated liver mitochondria were investigated. (a) Cytochrome c oxidase was isolated from the livers of hypothyroid, euthyroid and hyperthyroid rats and incorporated into liposomes made with soya phospholipids. There was no difference between the proton current/voltage curves of the three types of vesicles. The hormonal effects, therefore, were not an inherent property of the enzymes, and were not due to different coupling of electron flow through the enzyme to proton transport. (b) The surface area of the mitochondrial inner membrane was shown by three different assays to be greater by a factor of between two and three in mitochondria from hyperthyroid animals than in mitochondria from hypothyroid animals; euthyroid controls were intermediate. This difference in surface area of the inner membrane explains less than half of the difference in apparent proton permeability. (c) The proton permeability of liposomes prepared from phospholipids extracted from mitochondrial inner membranes of hyperthyroid rats was three times greater than the proton permeability of those from hypothyroid rats; euthyroid controls were intermediate. This suggests, first, that the proton permeability of the phospholipid bilayer is an important component of the proton permeability in intact mitochondria and, second, thyroid hormone-induced changes in the bilayer are a major part of the mechanism of increased proton permeability. Such changes may be due to the known differences in fatty acid composition of mitochondrial phospholipids in different thyroid states. Thus we have identified two mechanisms by which thyroid hormone levels in rats change proton flux/mass protein in isolated liver mitochondria: a change in the area of the inner membrane/mass protein and a change in the intrinsic permeability of the phospholipid bilayer.  相似文献   

19.
Reaction centers of the phototrophic bacterium Rhodopseudomonas palustris were introduced as proton motive force-generating systems in membrane vesicles of two anaerobic bacteria. Liposomes containing reaction center-light-harvesting complex I pigment protein complexes were fused with membrane vesicles of Streptococcus cremoris or Clostridium acetobutylicum by freeze-thawing and sonication. Illumination of these fused membranes resulted in the generation of a proton motive force of approximately -110 mV. The magnitude of the proton motive force in these membranes could be varied by changing the light intensity. As a result of this proton motive force, amino acid transport into the fused membranes could be observed. The initial rate of leucine transport by membrane vesicles of S. cremoris increased exponentially with the proton motive force. An H+/leucine stoichiometry of 0.8 was determined from the steady-state level of leucine accumulation and the proton motive force, and this stoichiometry was found to be independent of the magnitude of the proton motive force. These results indicate that the introduction of bacterial reaction centers in membrane vesicles by the fusion procedure yields very attractive model systems for the study of proton motive force-consuming processes in membrane vesicles of (strict) anaerobic bacteria.  相似文献   

20.
Bacteriorhodopsin pumps protons across a membrane using the energy of light. The proton pumping is inhibited when the transmembrane proton gradient that the protein generates becomes larger than four pH units. This phenomenon is known as the back-pressure effect. Here, we investigate the structural basis of this effect by predicting the influence of a transmembrane pH gradient on the titration behavior of bacteriorhodopsin. For this purpose we introduce a method that accounts for a pH gradient in protonation probability calculations. The method considers that in a transmembrane protein, which is exposed to two different aqueous phases, each titratable residue is accessible for protons from one side of the membrane depending on its hydrogen-bond pattern. This method is applied to several ground-state structures of bacteriorhodopsin, which residues already present complicated titration behaviors in the absence of a proton gradient. Our calculations show that a pH gradient across the membrane influences in a non-trivial manner the protonation probabilities of six titratable residues which are known to participate in the proton transfer: D85, D96, D115, E194, E204, and the Schiff base. The residues connected to one side of the membrane are influenced by the pH on the other side because of their long-range electrostatic interactions within the protein. In particular, D115 senses the pH at the cytoplasmic side of the membrane and transmits this information to D85 and the Schiff base. We propose that the strong electrostatic interactions found between D85, D115, and the Schiff base as well as the interplay of their respective protonation states under the influence of a transmembrane pH gradient are responsible for the back-pressure effect on bacteriorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号