首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To escape from starfish predators, giant scallops, Placopecten magellanicus, swim using series of strong phasic contractions interrupted by tonic contractions. To investigate whether these tonic contractions allow metabolic recuperation of the adductor muscle, we sampled scallops at rest (Control), after an initial series of phasic contractions (Phasic) and after 1 min of tonic contraction following their initial phasic contractions (Phasic + Tonic) and compared muscle levels of phosphoarginine, adenylate nucleotides (ATP, ADP and AMP) and adenylate energy charge (AEC). Scallops in the two active groups did not differ in the numbers of phasic contractions or the mean phasic force production. Phosphoarginine concentrations in the adductor muscle decreased with phasic activity and remained low after 1 min of tonic contraction. ATP and ADP and total adenylate levels did not differ between the three groups, but AMP levels were higher in the scallops sampled after phasic contractions than in control scallops. The AEC was reduced by phasic contractions but returned to control levels after 1 min of tonic contraction. A significant negative correlation between AEC and the number of claps in the Phasic group disappeared in the Phasic + Tonic group. Thus, tonic contractions following phasic contractions allow partial metabolic recovery of the adductor muscle by returning AEC to control levels. However, phosphoarginine levels did not recover during tonic contractions, and a negative correlation between the number of claps and phosphoarginine levels remained in the Phasic + Tonic group. By interspersing tonic contractions between series of phasic contractions, scallops improved muscle energetic status, which should help maintain phasic force production during the remainder of the escape response.  相似文献   

2.
Strength training counteracts motor performance losses during bed rest.   总被引:4,自引:0,他引:4  
The purpose of the study was to determine the effect of bed rest with or without strength training on torque fluctuations and activation strategy of the muscles. Twelve young men participated in a 20-day bed rest study. Subjects were divided into a non-training group (BRCon) and a strength-training group (BRTr). The training comprised dynamic calf-raise and leg-press exercises. Before and after bed rest, subjects performed maximal contractions and steady submaximal isometric contractions of the ankle extensor muscles and of the knee extensor muscles (2.5-10% of maximal torque). Maximal torque decreased for both the ankle extensors (9%, P < 0.05) and knee extensors (16%, P < 0.05) in BRCon but not in BRTr. For the ankle extensors, the coefficient of variation (CV) for torque increased in both groups (P < 0.05), with a greater amount (P < 0.05) in BRCon (88%) compared with BRTr (41%). For the knee extensors, an increase in the CV for torque was observed only in BRCon (22%). The increase in the CV for torque in BRCon accompanied the greater changes in electromyogram amplitude of medial gastrocnemius (122%) and vastus lateralis (59%) compared with BRTr (P < 0.05). The results indicate that fluctuations in torque during submaximal contractions of the extensor muscles in the leg increase after bed rest and that strength training counteracted the decline in performance. The response varied across muscle groups. Alterations in muscle activation may lead to an increase in fluctuations in motor output after bed rest.  相似文献   

3.
An explant culture system is described that allows examination of axonal growth from the tonically and phasically active motoneurons of the abdominal nerve cord of the crayfish. In this preparation, growth occurs from the cut end of the axon while the remainder of the motoneuron is undisturbed. In vitro growth from the branches of the third roots, which contain the axons from the tonic and phasic motoneurons of abdominal ganglia one through four, was verified as axonal by retrograde labeling of axons and neuronal somata within the nerve cord. Growth from the axons of phasic and tonic cells was observed as early as 24 h after plating and continued for an additional 7–10 days. The morphology and growth rates of the motor terminals differed between the tonic and phasic axons. The phasic axons grew significantly faster and branched more often than did the tonic motor axons. These differences in growth may be related to differences in motoneuron size or, may result from differences in electrical activity. Tonic motoneurons show spontaneous impulse activity for up to 6 days in culture, whereas phasic motoneurons show no spontaneous impulse activity. In addition, the differences in growth may be related to the morphological differences in tonic and phasic motor terminals observed in situ. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
A comparative model been designed to study a contribution of proteinkinase C-(PKC)-activated intracellular signaling pathways in generation of different contractile responses of vascular (tonic) and visceral (phasic) smooth muscles. We have determined that, in tonic smooth muscle, PKC mediates activation of MAP-kinases that phosphorylate key regulatory proteins of the contractile system, myosin light chain kinase and caldesmon, leading to upregulation of actomyosine motor activity. In contrast, the MAP-kinase activation is uncoupled from the contractile machinery in phasic smooth muscles, which also reveal high levels of myosin light chain kinase-related protein KRP that contributes to relaxation. Phosphorylation of KRP following activation of PKC or cyclic nucleotide-dependent protein kinases enhances the KRP activity and further contributes to relaxion in phasic smooth muscle. A possibility is discussed for exploitation of the comparative model described herein for investigation of specific role of other regulatory intracellular pathways in generation of vascular tonic contraction.  相似文献   

5.
The cellular substrates of antennular flicking behavior in the crayfish Procambarus clarkii were investigated. Flicking involves fast downward movements of the external filament of each biramous antennule (1st antenna), and is mediated by phasic contractions of a short muscle, the external filament depressor. Phasic contractions of the external filament depressor depend upon stereotyped impulse bursts in a single motorneuron (P1). These bursts have a characteristic impulse frequency profile that is consistent upon successive occurrences. The temporal characteristics of the impulse burst suggest that the central depolarizations generating each burst may be similar to driver potentials described for motor neurons in crustacean cardiac ganglia. Responses of the external filament to odorants have a long latency and are characterized by repetitive bursts and tonic activity in some external filament depressor fibers. Tonic activity in a slowly contracting muscle, the antennular depressor muscle, is also evoked by chemical stimulation. Flicking is consistently evoked only by mechanical or hydrodynamic stimulation of the cephalothorax, antennae and antennules. The sensitivity and short latency of the hydrodynamic antennule-generated flick reflex is consistent with the sensitivity of rapidly conducting, hydrodynamically activated mechanoreceptor neurons in both antennular filaments. I propose that antennular flicking, which has been shown to enhance the dynamic response characteristics of olfactory receptor neurons on the external antennular filament, has evolved as a response to the turbulence associated with fluid movement, within which chaotic odorant concentration fronts may be imbedded. Accepted: 23 October 1996  相似文献   

6.
Intramuscular electromyographic activity of the thyroarytenoid (TA) muscle, a vocal cord adductor, was recorded in nine normal adult humans during progressive isocapnic hypoxia and hyperoxic hypercapnia. Four of the nine subjects also performed voluntary isocapnic hyperventilation. During quiet breathing of room air, the TA exhibited phasic activity in expiration and often tonic activity throughout the respiratory cycle. Both phasic and tonic TA activity progressively decreased with either increasing hypoxia or hypercapnia. Tonic activity appeared to decrease more rapidly than phasic activity with increasing chemical stimulation. At comparable tidal volume increments, the relative decrease in phasic TA activity appeared to be greater under hypoxic than under hypercapnic conditions. During voluntary isocapnic hyperventilation, phasic TA activity decreased without significant change in tonic activity. At tidal volumes approximately double those of base line, the relative decrease in TA activity was similar during both hypercapnia and voluntary hyperventilation, although differences appeared at higher tidal volumes. The results, in combination with recent findings in humans regarding the posterior cricoarytenoid muscle, a vocal cord abductor, suggest that vocal cord position is dependent on the net balance of counteracting forces not only during quiet breathing but also during involuntary and voluntary hyperpnea.  相似文献   

7.
An Attempt to Account for the Diversity of Crustacean Muscles   总被引:1,自引:1,他引:0  
Crustacean muscles are known to contain muscle fibers of variableproperties and to be innervated by phasic and/or tonic motoneuronswhich may possess synapses of diverse physiological properties.Frequently, phasic motor axons innervate short-sarcomere phasicmuscle fibers and tonic motor axons innervate long-sarcomeretonic muscle fibers, but some muscles receiving a single (tonic)motor axon contain both phasic and tonic muscle fibers. Althoughit is not known whether neural trophic influences are involvedin muscle differentiation, some neural trophic effects havebeen found in crustaceans, and it is reasonable to assume thatsuch influences may be involved in establishing the definitiveproperties of the muscle. Several other postulates must be made:(1) Phasic and tonic motor axons differ in their trophic effectiveness:(2) muscle fibers innervated relatively early in developmentby a tonic motor axon acquire the properties of tonic musclefibers, while those innervated later become intermediate orphasic muscle fibers; (3) the developmental stage of a growingor regenerating axon terminal plays a role in determinationof synaptic properties. Studies on regenerating limb buds supportthe hypothesis, which can account for the genesis of all observedtypes of crustacean neuromuscular system. Further experimentalwork is necessary to test the hypothesis.  相似文献   

8.
The uropods of decapod crustaceans play a major role in the production of thrust during escape swimming. Here we analyse the output connections of a pair of giant interneurones, that mediate and co-ordinate swimming tail flips, on motor neurones that control the exopodite muscles of the uropods. The lateral giants make short latency output connections with phasic uropod motor neurones, including the productor, the lateral abductor and adductor exopodite motor neurones that we have identified both physiologically and anatomically. On the other hand, tonic motor neurones, including the ventral abductor and reductor exopodite motor neurones, receive no input from the lateral giants. We show that there is no simple reciprocal activation of the phasic opener (lateral abductor) and closer (adductor) motor neurones of the exopodite, but instead both phasic motor neurones are activated in parallel with the productor motor neurone during a tail flip. Our results show that the neuronal pathways activating the tonic and phasic motor neurones of the exopodite are apparently independent, with phasic motor neurones being activated during escape movements and tonic motor neurones being activated during slow postural movements.  相似文献   

9.
Forty-eight college students were assigned randomly to four groups in a 2 X 2 factorial arrangement of phasic conditional stimuli (same vs. different) and tonic conditional stimuli (same vs. different) to receive 2 days of classical conditioning with a transswitching procedure. Tonic stimuli were a 5-minute projected white triangle or circle; phasic stimuli were a 5-second red or green square superimposed over the tonic stimuli. There were six tonic stimulus segments each day, separated by 20-second periods of no stimulus, three containing six trials of the phasic stimulus paired with shock and three containing six trials of the phasic stimulus alone, in the counterbalanced order. Tonic responding at the onset of the tonic stimuli or during brief periods following its onset were recorded, along with phasic responses to the phasic stimuli. Responses included magnitude of skin conductance responses, frequency of unelicited skin conductance responses, and tonic heart rate. Both skin conductance measures of responding to the tonic stimuli differentiated significantly between positive and negative tonic segments during Day 2, but only in the group with two different tonic stimuli and one phasic stimulus ("standard" transswitching). This supported the hypothesis that tonic stimulus differentiation would be absent when two different phasic stimuli were present. The heart rate data did not support this hypothesis, showing tonic differentiation in both groups with two tonic stimuli. Phasic differentiation controlled by the different phasic stimuli was observed on Day 1; on Day 2, phasic differentiation was present only in the group with two tonic and one phasic stimuli and the group with one tonic and two phasic stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The relationships between the anticipatory postural components when standing subjects raised their arms and the latent period (LP) of the motor response determined by the beginning of the deltoid muscle activation were analyzed. The LP range from the least possible to 1 s was analyzed. In the case of short LPs (approximately up to 170 ms), the anticipation time for the ipsilateral biceps femoris muscle (BFM) and sacrospinalis muscle (SSM) increased linearly with the LP; at longer LPs, it did not depend on the LP and was characterized by a wide scatter. In the case of short LPs, the delay time of the beginning of activation of postural muscles in relation to the signal for movement remained constant and was approximately 100 ms for the BFM and 120 ms for the SSM. This is explained by the fact that, with short LPs of motor response, the CNS had insufficient time to complete postural adjustments before the beginning of movement, which resulted in shortening of the anticipation time of the start of change in the activity of postural muscles and, as a consequence, the appearance of an additional initial backward inclination of the body. The results obtained are discussed in the context of organizing the interaction between the regulation of maintaining the vertical posture and the system of movement control.  相似文献   

11.
BackgroundSpasticity and spastic dystonia are two separate phenomena of the upper motor neuron syndrome. Spasticity is clinically defined by velocity-dependent hypertonia and tendon jerk hyperreflexia due to the hyper-excitability of the stretch reflex. Spastic dystonia is the inability to relax a muscle leading to a spontaneous tonic contraction. Both spasticity and spastic dystonia are present in patients who are at rest; however, only patients with spasticity are actually able to kept their muscles relaxed prior to muscle stretch. The idea that has inspired the present work is that also in patients with spastic dystonia the stretch reflex is likely to be hyper-excitable. Therefore, velocity-dependent hypertonia could be mediated not only by spasticity, but also by spastic dystonia.MethodsTonic stretch reflexes in the rectus femoris muscle were evoked in 30 patients with multiple sclerosis showing velocity-dependent hypertonia of leg extensors and the habituation of the reflex was studied. Moreover, the capability of relax the muscle prior to muscle stretch (spastic dystonia) was also investigated.ResultsA tonic stretch reflex was evoked in all the enrolled patients. 73% of the patients were able to relax their rectus femoris muscle prior to stretch (spasticity). In the overwhelming majority of these patients, the tonic stretch reflex decreased during repeated stretches. In the remaining 27% of the subjects, the muscle was tonically activated prior to muscle stretch (spastic dystonia). In the patients in whom spastic dystonia progressively increased over the subsequent stretches (50% of the subjects with spastic dystonia), the habituation of the reflex was replaced by a progressive reflex facilitation.DiscussionThis study shows for the first time that velocity-dependent hypertonia can be caused by two distinct phenomena: spasticity and spastic dystonia. The habituation of the tonic stretch reflex, which is a typical feature of spasticity, is replaced by a reflex facilitation in the half of the subject with spastic dystonia. These preliminary findings suggest that differentiating the two types of velocity-dependent muscle hypertonia (spasticity and spastic dystonia) could be clinically relevant.  相似文献   

12.
In experiments on immobilized cats, intra- and extracellular response in tonic type neurons to tones of differing frequencies and intensities were investigated, as well as the organizational pattern of receptive fields in these units. Tonic type neurons were encountered at different cortical layers, but mostly (93% of the total) were located at a depth of 1.0–2.2 mm. Minimum thresholds required for response in these neurons were on average 7.7 dB below that found in neurons generating a phasic reaction in response to a tone. "Tonic" differed from "phasic" neurons in their inferior frequency-discriminative ability, with a Q10 value averaging 4.1±0.4 as against 9.1±0.7 in phasic neurons. Size of receptive fields in tonic neurons (as revealed by occurrence of spike response in these units) was 3.5 times that observed in phasic cells. Length of action potentials in the majority (80%) of tonic neurons was about one and a half times to twice that found in phasic units. Tonic neurons also displayed a high degree of sensitivity to changes in the duration and intensity of acoustic stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, July–August, pp. 498–506, 1969.  相似文献   

13.
Dendritic properties of uropod motoneurons and premotor nonspiking interneurons of crayfish have been studied using intradendritic recording and current injection. The input resistance of phasic motoneurons (5.20 ± 0.5 M; mean ± standard error) measured by injecting constant hyperpolarizing current was significantly lower than that of tonic motoneurons (10.3 ± 2.6 M; 0.02 < P < 0.05). The membrane time constant of phasic motoneurons (7.3 ± 0.9 ms) was also significantly shorter than that of tonic motoneurons (24.3 ± 2.5 ms; P < 0.001). Both types of motoneurons behaved linearly during hyperpolarization and sub-threshold depolarization. Nonspiking interneurons showed outward rectification upon depolarization. During hyperpolarization, their membrane behaved linearly and showed significantly higher input resistance (19.5 ± 2.5 M) than phasic and tonic motoneurons (P < 0.001). Their membrane time constant (38.0 ± 5.7 ms) was significantly longer than that of phasic motoneurons (P < 0.001) but not than that of tonic motoneurons (P > 0.05). In response to intracellular injection of sinusoidally oscillating current, phasic motoneurons showed one or two spikes per depolarization period irrespective of oscillating frequency ranging from 1 to 16 Hz. Tonic motoneurons showed larger numbers of spikes per stimulus period at lower frequencies. Nonspiking interneurons also showed phase-locked effects on the motoneuron spike activity. The effective frequency range over which injected oscillating current could modulate motoneuron spike activity was similar for tonic motoneurons and nonspiking interneurons.  相似文献   

14.
The effects of 2 and 4 mo of bed rest, with or without exercise countermeasures, on the contractile properties of slow fibers in the human soleus muscle were examined. Mean fiber diameters were 8 and 36% smaller after 2 and 4 mo of bed rest, respectively, than the pre-bed rest level. Maximum tetanic force (P(o)), maximum activated force (F(max)) per cross-sectional area (CSA), and the common-logarithm value of free Ca(2+) concentration required for half-maximal activation (pCa(50)) also decreased after 2 and 4 mo of bed rest. In contrast, maximum unloaded shortening velocity (V(o)) was increased after 2 and 4 mo of bed rest. After 1 mo of recovery, fiber diameters, P(o), F(max) per CSA (P > 0.05), and pCa(50) were increased and V(o) decreased toward pre-bed rest levels. Effects of knee extension/flexion exercise by wearing an anti-G Penguin suit for 10 h daily, and the effects of loading or unloading of the plantar flexors with (Penguin-1) or without (Penguin-2) placing the elastic loading elements of the suit, respectively, were investigated during ~2 mo of bed rest. In the Penguin-1 group, mean fiber diameter, P(o), F(max) per CSA, V(o), and pCa(50) were similar before and after bed rest. However, the responses of fiber size and contractile properties to bed rest were not prevented in the Penguin-2 group, although the degree of the changes was less than those induced by bed rest without any countermeasure. These results indicate that long-term bed rest results in reductions of fiber size, force-generation capacity, and Ca(2+) sensitivity, and enhancement of shortening velocity in slow fibers of the soleus. The data indicate that continuous mechanical loading on muscle, such as stretching of muscle, is an effective countermeasure for the prevention of muscular adaptations to gravitational unloading.  相似文献   

15.
The reactions of single motor units (MU) of the flexor muscles (musculus tibialis anterior and musculus biceps femoris) to tactile (light touch), nociceptive (strong compression), and electrical stimulation of the skin of the same extremity were investigated in unanesthetized spinal rats and cats. These reactions were compared with the reactions of the same MU to impulsation from a focus of inflammation evoked on the same extremity. It is shown that the smaller the motor units (judging by the amplitude of its action potential), the higher its sensitivity to exciting and the lower its sensitivity to inhibitory effects from the flexor reflex afferents (FRA), the longer its after-discharges and the more pronounced its capacity for prolonged discharges in response to prolonged stimulation of the FRA. These functional properties of the small MU are characteristic of the tonic motor neurons and the slow muscle fibers innervated by them. It is shown that prolonged impulsation from a focus of inflammation evokes the continuous activity of precisely these (tonic) MU. The activity of the large (phasic) MU ceases 2–3 min after injury which causes a focus of inflammation. Such selective activation of only some of the tonic MU is evidently due to the fact that the prolonged exciting synaptic effect of impulsation from the focus of inflammation causes accommodation of the phasic motor neurons.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 308–315, May–June 1971.  相似文献   

16.
Studies of sleep influences on human pharyngeal and other respiratory muscles suggest that the activity of these muscles may be affected by non-rapid-eye-movement (NREM) sleep in a nonuniform manner. This variable sleep response may relate to the pattern of activation of the muscle (inspiratory phasic vs. tonic) and peripheral events occurring in the airway. Furthermore, the ability of these muscles to respond to respiratory stimuli during NREM sleep may also differ. To systematically investigate the effect of NREM sleep on respiratory muscle activity, we studied two tonic muscles [tensor palatini (TP), masseter (M)] and two inspiratory phasic ones [genioglossus (GG), diaphragm (D)], also measuring the response of these muscles to inspiratory resistive loading (12 cmH2O.l-1.s) during wakefulness and NREM sleep. Seven normal male subjects were studied on a single night with intramuscular electrodes placed in the TP and GG and surface electrodes placed over the D and M. Sleep stage, inspiratory airflow, and moving time average electromyograph (EMG) of the above four muscles were continuously recorded. The EMG of both tonic muscles fell significantly (P less than 0.05) during NREM sleep [TP awake, 4.3 +/- 0.05 (SE) arbitrary units, stage 2, 1.1 +/- 0.2; stage 3/4, 1.0 +/- 0.2. Masseter awake, 4.8 +/- 0.6; stage 2, 3.3 +/- 0.5; stage 3/4, 3.1 +/- 0.5]. On the other hand, the peak phasic EMG of both inspiratory phasic muscles (GG and D) was well maintained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Antigravity muscles atrophy and weaken during prolonged mechanical unloading caused by bed rest or spaceflight. Unloading also induces oxidative stress in muscle, a putative cause of weakness. We tested the hypothesis that dietary supplementation with Bowman-Birk inhibitor concentrate (BBIC), a soy protein extract, would oppose these changes. Adult mice were fed a diet supplemented with 1% BBIC during hindlimb unloading for up to 12 days. Soleus muscles of mice fed the BBIC-supplemented diet weighed less, developed less force per cross-sectional area, and developed less total force after unloading than controls. BBIC supplementation was protective, blunting decrements in soleus muscle weight and force. Cytosolic oxidant activity was assessed using 2',7'-dichlorofluorescin diacetate. Oxidant activity increased in unloaded muscle, peaking at 3 days and remaining elevated through 12 days of unloading. Increases in oxidant activity correlated directly with loss of muscle mass and were abolished by BBIC supplementation. In vitro assays established that BBIC directly buffers reactive oxygen species and also inhibits serine protease activity. We conclude that dietary supplementation with BBIC protects skeletal muscle during prolonged unloading, promoting redox homeostasis in muscle fibers and blunting atrophy-induced weakness.  相似文献   

18.
During elaboration of a classical defensive conditioned reflex the dogs exhibited a dependence of the changes in amplitude and configuration of evoked potentials (EP) to electrical stimulation of the medial geniculate body (MGB), a conditioned stimulus, on the nature of effector manifestation of the conditioned reflex: the late components were the most depressed at multiple phasic reactions and not infrequently increased and became complicated at single and short motor reactions as well as at their incidental absence. The primary oscillations, while mostly remaining unchanged, were depressed in the case of conditioned reactions attended with a general motor restlessness. A difference has been revealed during conditioning in the EP changes to electrical stimulation of MGB and to an adequate peripheral stimulation. It has been assumed that EP changes during conditioned activity are determined by the relationship between the levels of tonic and phasic cortical activation.  相似文献   

19.
Contractility of the proximal and distal vaginal wall smooth muscle may play distinct roles in the female sexual response and pelvic support. The goal of this study was to determine whether differences in contractile characteristics of smooth muscle from these regions reside in differences in the expression of isoforms of myosin, the molecular motor for muscle contraction. Adult female Sprague-Dawley rats were killed on the day of estrus, and the vagina was dissected into proximal and distal segments. The Vmax at peak force was greater for tissue strips of the proximal vagina compared with that of distal (P < 0.01), although, at steady state, the Vmax for the muscle strips from the two regions was not different. Furthermore, at steady state, muscle stress was higher (P < 0.001) for distal vaginal strips (n = 5). Consistent with the high Vmax for the proximal vaginal strips, RT-PCR results revealed a higher %SM-B (P < 0.001) in the proximal vagina. A greater expression of SM-B protein (P < 0.001) was also detected by Western blotting (n = 4). Interestingly, there was no regional difference noted in SM-1/SM-2 isoforms (n = 6). The proximal vagina had a higher expression of myosin heavy chain protein (P < 0.01) and a greater percentage of smooth muscle bundles (P < 0.001). The results of this study are the first demonstration of a regional heterogeneity in Vmax and myosin isoform distribution in the vagina wall smooth muscle and confirm that the proximal vaginal smooth muscle exhibits phasic contractile characteristics compared with the distal vaginal smooth muscle, which is tonic.  相似文献   

20.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号