首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative effects of light and tree height on the architecture of leader crowns (i.e., the leading section of the main trunk, 100 cm in length) and current-year shoots for a canopy species, Fagus crenata, occupying both the ridge top and the valley bottom in a cool-temperate forest in Japan were investigated. For leader crowns, the number of current-year shoots and leaves increased with increasing tree height, whereas the mean length of current-year shoots increased with increasing relative photon flux density (PFD). The leader crown area decreased, and the depth and leaf area index of leader crowns increased, with increasing relative PFD. The mass of current-year shoots increased with relative PFD. However, this total mass was allocated differently between stems and leaves depending on tree height, such that the relative allocation to stems increased with increasing tree height. Furthermore, stem structures within current-year shoots also changed with height, such that taller trees produced thicker and shorter stems of the same volume. In contrast, leaf structure and leaf biomass allocations changed with relative PFD. Specific leaf area decreased with increasing relative PFD. In addition, leaf number increased more rapidly with increasing individual leaf mass for trees exposed to greater relative PFD. Consequently, the total leaf area supported by a stem of a given diameter decreased with increasing tree height and relative PFD. Thus, the architecture of leader crowns and current-year shoots were related differently to light and tree height, which are considered important for efficient light capture and the growth of small and tall trees in different environments.  相似文献   

2.
Currently, foliage biomass is estimated based on stem diameter or basal area. However, it is questionable whether the relations between foliage and stem observed from plantations of a single tree species can be applied to stands of different structure or species composition. In this paper, a procedure is presented to simulate foliage and branch biomass of tree crowns relative to crown size and light competition. Crowns are divided into layers and segments and each segment is divided into a foliated and an unfoliated fraction. Depending on the competitive status of the segment, leaf area density, specific leaf area and foliated branch fraction are determined. Based on this information, foliage biomass is calculated. The procedure requires a crown shape function and a measure to characterise competition for light and space of each individual segment within the canopy. Simple solutions are suggested for both requirements to enable an application with data that can be measured non-destructively in the field; these were stem position, tree height, crown base height, crown radii and some general crown shape information. The model was parameterised from single trees of Norway spruce and European beech and partly evaluated with independent data close to the investigation plot. Evaluations showed that the model can attribute the ecology of the different crown forms. Modelled foliage distribution for beech and spruce as well as total needle biomass of spruce agreed well with measurements but foliage biomass of beech was underestimated. The results are discussed in the context of a general model application in structured forests.  相似文献   

3.
From an analytical model it was shown that for a given total amount of nitrogen in the canopy, there exists an optimal leaf area index (LAI), and therefore an optimal average leaf introgen content, at which canopy photosynthesis is maximal. If the LAI is increased above this optimum, increased light interception will not compensate for reduction in photosynthetic capacity of the canopy resulting from reduced leaf nitrogen contents. It was further derived from the model that the value of the optimal LAI increases with the photosynthetic nitrogen use efficiency (PNUE) and decreases with the canopy extinction coefficient for light (KL) and incident photon flux density (PFD) at the top of the canopy. These hypotheses were tested on dense stands of species with different photosynthetic modes and different architectures. A garden experiment was carried out with the C4 monocot sorghum ( Sorghum bicolor [L.] Moensch cv. Pioneer), the C3 monocot rice ( Oryza sativa L. cv. Araure 4), the C4 dicot amaranth ( Amaranthus cruentus L. cv. K113) and the C3 dicot soybean ( Glycine max [L.] Merr. cv. Williams) at two levels of nitrogen availability.
The C4 species had higher PNUEs than the C3 species while the dicots formed stands with higher extinction coefficients for light and had lower PNUEs than the monocots. The C4 and monocot species were found to have formed more leaf area per unit leaf nitrogen (i.e., had lower leaf nitrogen contents) than the C3 and dicot species, respectively. These results indicate that the PNUE and the extinction coefficient for light are important factors determining the amount of leaf area produced per unit nitrogen as was predicted by the model.  相似文献   

4.
Mixed forests comprising multiple tree species with contrasting crown architectures, leaf phenologies, and photosynthetic activity, tend to have high ecosystem productivity. We propose that in such forests, differentiation among coexisting species in their spatial and temporal strategies for light interception, results in complementary use of light. Spatial differentiation among coexisting tree species occurs as a result of adaptation of crown architecture and shoot/leaf morphology to the spatially variable light conditions of the canopy, sub-canopy, and understory. Temporal differentiation occurs as a result of variation in leaf phenology and photosynthetic activity. The arrangement of leaves in both space and time is an important aspect of plant strategies for light interception and determines photosynthetic carbon gain of the plant canopy. For example, at the shoot level, morphological and phenological differentiation between long and short shoots reflects their respective shoot functions, indicating that spatial and temporal strategies for light interception are linked. Complementary use of light is a consequence of the spatiotemporal differentiation in light interception among coexisting species. Because coexisting species may show differentiation in strategies for resource acquisition (functional diversification) or convergence with respect to some limiting resource (functional convergence), the relative importance of various crown functions and their contribution to growth and survival of individuals need to be evaluated quantitatively and compared among coexisting species.  相似文献   

5.
Leaf and crown characteristics were examined for 24 tree and herbaceous species of contrasting architectures from the understory of a lowland rainforest. Light-capture efficiency was estimated for the crowns of the different species with a three-dimensional geometric modeling program. Causal relationships among traits affecting light absorption at two hierarchical levels (leaf and whole crown) were quantified using path analysis. Light-capture and foliage display efficiency were found to be very similar among the 24 species studied, with most converging on a narrow range of light absorption efficiencies (ratio of absorbed vs. available light of 0.60-0.75). Exceptionally low values were found for the climber vines and, to a lesser extent, for the Bromeliad Aechmea magdalenae. Differences in photosynthetic photon flux density (PFD) absorbed per unit leaf area by individual plants were mostly determined by site to site variation in PFD and not by the differences in crown architecture among individuals or species. Leaf angle, and to a lesser extent also supporting biomass, specific leaf area, and internode length, had a significant effect on foliage display efficiency. Potential constraints on light capture such as the phyllotactic pattern were generally offset by other compensatory adjustments of crown structure such as internode length, arching stems, and plagiotropy. The variety of shoot morphologies capable of efficiently capturing light in tropical forest understories is greater than initially thought, extending over species with very different phyllotactic patterns, crown architectures, leaf sizes, and morphologies.  相似文献   

6.
丁圣彦  卢训令  李昊民 《生态学报》2005,25(11):2862-2867
常绿阔叶林是我国中亚热带东部典型植被类型,根据野外踏查和固定样地调查发现,天童国家森林公园内发育着常绿阔叶林一个完整的演替系列,包含着6个不同演替阶段。应用W inScanopy For C anopy A na lys is软件对研究区内不同演替阶段群落冠层进行分析,得到不同群落冠层和林下的光环境特征指标:PPFD(光合光量子通量密度)和相关的冠层结构形态学指标G ap fraction(空隙度)、LA I(叶面积指数)、M LA(平均叶倾角),通过对这些指标的分析比较,得到的基本规律大致是林冠层的光合有效光量子通量密度随演替逐渐降低,林冠下面的光合有效光量子通量密度随着群落演替的进展变化更为明显。马尾松林的林冠空隙度明显高于其他阶段的群落,总的趋势是随群落演替的进展而降低。叶面积指数随演替的进展而呈增加趋势。平均叶倾角随演替的进展先增大而后减小。这些结果反映了常绿阔叶林不同演替阶段群落由于不同树种树冠形态学结构的差异和微环境的不同,形成了特定群落内的特定光环境。  相似文献   

7.
A detailed biometrical study of the exotic understorey invader Prunus serotina (Ehrh.) was carried out in a mixed coniferous forest stand in northern Belgium. Based on detailed destructive measurements of eight selected model trees, allometric relations of tree height, crown projected area, woody and leaf dry mass and leaf area on tree diameter at breast height (DBH) were derived. The scaling-up procedure from the tree to the stand level was done using the frequency distribution of DBH obtained at the selected experimental plot. The vertical and radial distributions of the tree foliage were estimated by the “cloud” technique. The vertical profile of leaf area showed a bimodal distribution pattern with maxima at heights of 4 and 6 m above the ground. The leaf area index (LAI) of the understorey Prunus serotina as estimated by the described up-scaling procedure (5.1) was significantly higher than the LAI (2.6) as measured by a plant canopy analyser and was also significantly higher than the LAI of the overstorey species Scots pine (1.5–3.0). The LAI of a neighbouring Rhododendron understorey reached only 1.25. This study emphasises the importance of an exotic understorey species in the total leaf area of mixed coniferous forests which might have important implications for the energy and mass exchanges of the entire forest.  相似文献   

8.

Background and Aims

Proper characterization of the clumped structure of forests is needed for calculation of the absorbed radiation and photosynthetic production by a canopy. This study examined the dependency of crown-level clumping on tree size and growth conditions in Scots pine (Pinus sylvestris), and determined the ability of statistical canopy radiation models to quantify the degree of self-shading within crowns as a result of the clumping effect.

Methods

Twelve 3-D Scots pine trees were generated using an application of the LIGNUM model, and the crown-level clumping as quantified by the crown silhouette to total needle area ratio (STARcrown) was calculated. The results were compared with those produced by the stochastic approach of modelling tree crowns as geometric shapes filled with a random medium.

Key Results

Crown clumping was independent of tree height, needle area and growth conditions. The results supported the capability of the stochastic approach in characterizing clumping in crowns given that the outer shell of the tree crown is well represented.

Conclusions

Variation in the whole-stand clumping index is induced by differences in the spatial pattern of trees as a function of, for example, stand age rather than by changes in the degree of self-shading within individual crowns as they grow bigger.  相似文献   

9.
10.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

11.
The vertical foliage distribution of Castanopsis cuspidata (Thunb.) Schottky was examined in trees of various sizes to clarify its variation in relation to tree size and the light environment in a stand. As indices of these parameters, we analyzed crown social position (CSP: percent of stand height) and specific leaf area (SLA). The vertical foliage distribution of trees was expressed by a Weibull function. The variation in the vertical foliage distribution of C. cuspidata could be categorized into three types using crown social position and light environment. In the first type, leaves were concentrated to the top 20% of the tree; such trees are canopy trees that can receive full sunlight. The second type had a large relative crown depth and an asymmetric distribution with the maximum foliage located near the top of the tree; such trees are suppressed trees whose crowns do not receive sufficient light. The third type had a large relative crown depth and a symmetric distribution; such trees occur in high light environments, although their crowns are in the understory layer. The differences in the vertical foliage distribution are related to the strategies used to capture light. Multiple regression analysis showed that CSP and SLA at the top layer of the tree explained successive changes in the vertical foliage distribution. These results will contribute to scaling-up the vertical foliage distribution to the community level in pure stands of C. cuspidata using an individual-based model.  相似文献   

12.
1. The connection between high leaf area index (LAI) and photosynthetic production with two attributes of coniferous canopy structure: small leaf size and grouping of needles on shoots, was analysed using a simulation model.
2. The small size of conifer needles gives rise to penumbras, which even out the distribution of direct sunlight on the leaf area and thereby act to increase the rate of canopy photosynthesis per unit of LAI.
3. Grouping, by producing a non-uniform distribution of leaf area, causes a decrease in total canopy light interception at any given LAI, but improves the photosynthetic light capture by shoots in the lower canopy.
4. Application of the model on a case study showed that: (a) grouping had a negative effect on the rate of photosynthesis in the upper canopy, but deeper down in the canopy the situation was reversed; (b) in the lower canopy, photosynthetic rates were up to 10 times higher as a result from the combined effect of grouping and penumbra; (c) grouping did not improve the rate of canopy photosynthesis per unit of LAI, however, it can have a positive effect on the total photosynthetic production by allowing a higher productive LAI to be maintained; (d) penumbra, on the other hand, increased the rate of canopy photosynthesis by as much as 40% for moderate values of the LAI.  相似文献   

13.
群体中叶片光合能力的分布及其对群体光合作用的影响   总被引:3,自引:0,他引:3  
利用数学变分原理分析了群体中叶片光合能力对环境适应和有限氮资源利用的最优分布。叶片光合能力呈现与光强相同的负指数衰减分布时,“群体的光合速率和对氮的利用率最高;叶片对环境光强适应的优越性随群体消光系数和叶面积指数增加而增加。由此推导了叶片光合能力最优分布下的群体光合模型。  相似文献   

14.
Leafing pattern has long been considered as an important element characterizing the growth strategy of tree species; however, the consequences of leafing pattern for tree-crown formation have not been fully understood. To address this issue, the dynamic events (growth, birth, and death) of current-year shoots and leaves were investigated together with their location in saplings of a pioneer tree, Alnus sieboldiana. The leafing pattern was characterized by successive emergence and shedding of short-lived leaves. The combination of successive leafing and within-crown variation in leaf production brought about characteristic outcomes in crown morphology. In the outer crown, because of continuous leaf production, the shoots achieved great extension and enormous daughter shoot production, resulting in rapid expansion of the crown. In contrast, in the inner crown, due to early termination of leaf production, the shoots completely lost their leaves early in the growing season and consequently themselves died and were shed within the season. Such quick shedding of shoots caused “crown hollowing”, i.e., the interior crown consisted of primary branches with little secondary development or foliage. These dynamic features are an effective adaptive strategy in early succession but also may be a disadvantage to maintaining foliage for longer period. Crown maintenance associated with the longevity of structural components is thought to play an important role in survival strategy of tree species.  相似文献   

15.
ABSTRACT

Drought responses, leaf area index (LAI), leaf characteristics and light extinction coefficient (k) were analysed in thinned and unthinned Turkey oak (Quercus cerris L.) stands at two sites: Valsavignone, in the Apennines, with a mild climate, and Caselli, near the Tyrrhenian coast, with a longer and more accentuated dry period in the summer. Turkey oak showed a good adaptability to drought due to a series of modifications in leaf characteristics, canopy properties and biomass allocation such as leaf area reduction, increased leaf thickness, smaller number of leaves and, at stand level, lower LAI, leaf biomass and LWR values and higher light extinction coefficients. In spite of the better environmental conditions and the higher LAI values, productivity was lower in the wet site. The differences in Turkey oak canopy properties, light extinction coefficients, LAI and their relations with drought and productivity are discussed.  相似文献   

16.
Gap dynamics theory proposes that treefall gaps provide high light levels needed for regeneration in the understory, and by increasing heterogeneity in the light environment allow light‐demanding tree species to persist in the community. Recent studies have demonstrated age‐related declines in leaf area index of individual temperate trees, highlighting a mechanism for gradual changes in the forest canopy that may also be an important, but less obvious, driver of forest dynamics. We assessed the prevalence of age‐related crown thinning among 12 tropical canopy tree species sampled in lowland forests in Panama and Puerto Rico (total = 881). Canopy gap fraction of individual canopy tree crowns was positively related to stem diameter at 1.3 m (diameter at breast height) in a pooled analysis, with 10 of 12 species showing a positive trend. Considered individually, a positive correlation between stem diameter and canopy gap fraction was statistically significant in 4 of 12 species, all of which were large‐statured canopy to emergent species: Beilschmiedia pendula, Ceiba pentandra, Jacaranda copaia, and Prioria copaifera. Pooled analyses also showed a negative relationship between liana abundance and canopy gap fraction, suggesting that lianas could be partially obscuring age‐related crown thinning. We conclude that age‐related crown thinning occurs in tropical forests, and could thus influence patterns of tree regeneration and tropical forest community dynamics.  相似文献   

17.
Summary The structural characteristics of a diverse array of Quercus coccifera canopies were assessed and related to measured and computed light attenuation, proportion of sunlit foliage, foliage temperatures, and photosynthesis and diffusive conductance behavior in different canopy layers. A canopy model incorporating all components of shortwave and longwave radiation, and the energy balance, conductance, and CO2 and H2O exchanges of all leaf layers was developed and compared with measurements of microclimate and gas exchange in canopies in four seasons of the year. In the denser canopies with a leaf area index (LAI) greater than 5, there is little sunlit foliage and the diffuse radiation (400–700 nm) is attenuated to 5% or less of the global radiation (400–700 nm) incident on the top of the canopy. Foliage of this species is nonrandomly distributed with respect to azimuth angle, and within each canopy layer, foliage azimuth and inclination angles are correlated. A detailed version of the model which computed radiation interception and photosynthetic light harvesting according to these nonrandom distributions indicated little difference in whole-canopy gas exchange from calculations of the normal model, which assumes random azimuth orientation. The contributions of different leaf layers to canopy gas exchange are not only a function of the canopy microclimate, but also the degree to which leaves in the lower layers of the canopy exhibit more shade-leaf characteristics, such as low photosynthetic and respiratory capacity and maximal conductance. On cloudless days, the majority of the foliage in a canopy of 5.4 LAI is shaded —70%–90% depending on the time of year. Yet, the shaded foliage under these conditions is calculated to contribute only about one-third of the canopy carbon gain. This contribution is about the same as that of the upper 13% of the canopy foliage. Computed annual whole-canopy carbon gain and water use are, respectively, 60% and 100% greater for a canopy of 5 LAI than for one of 2 LAI. Canopy water-use efficiency is correspondingly less for the canopy of 5 LAI than for that of 2 LAI, but most of this difference is apparent during the cool months of the year, when moisture is more abundant.  相似文献   

18.
Background The spatial arrangement and expression of foliar syndromes within tree crowns can reflect the coupling between crown form and function in a given environment. Isolated trees subjected to high irradiance and concomitant stress may adjust leaf phenotypes to cope with environmental gradients that are heterogeneous in space and time within the tree crown. The distinct expression of leaf phenotypes among crown positions could lead to complementary patterns in light interception at the crown scale.Methods We quantified eight light-related leaf traits across 12 crown positions of ten isolated Olea europaea trees in the field. Specifically, we investigated whether the phenotypic expression of foliar traits differed among crown sectors and layers and five periods of the day from sunrise to sunset. We investigated the consequences in terms of the exposed area of the leaves at the tree scale during a single day.Key Results All traits differed among crown positions except the length-to-width ratio of the leaves. We found a strong complementarity in the patterns of the potential exposed area of the leaves among day periods as a result of a non-random distribution of leaf angles across the crown. Leaf exposure at the outer layer was below 60 % of the displayed surface, reaching maximum interception during morning periods. Daily interception increased towards the inner layer, achieving consecutive maximization from east to west positions within the crown, matching the sun’s trajectory.Conclusions The expression of leaf traits within isolated trees of O. europaea varies continuously through the crown in a gradient of leaf morphotypes and leaf angles depending on the exposure and location of individual leaves. The distribution of light-related traits within the crown and the complementarity in the potential exposure patterns of the leaves during the day challenges the assumption of low trait variability within individuals.  相似文献   

19.
A model of dynamics of leaves and nitrogen is developed to predict the effect of environmental and ecophysiological factors on the structure and photosynthesis of a plant canopy. In the model, leaf area in the canopy increases by the production of new leaves, which is proportional to the canopy photosynthetic rate, with canopy nitrogen increasing with uptake of nitrogen from soil. Then the optimal leaf area index (LAI; leaf area per ground area) that maximizes canopy photosynthesis is calculated. If leaf area is produced in excess, old leaves are eliminated with their nitrogen as dead leaves. Consequently, a new canopy having an optimal LAI and an optimal amount of nitrogen is obtained. Repeating these processes gives canopy growth. The model provides predictions of optimal LAI, canopy photosynthetic rates, leaf life span, nitrogen use efficiency, and also the responses of these factors to changes in nitrogen and light availability. Canopies are predicted to have a larger LAI and a higher canopy photosynthetic rate at a steady state under higher nutrient and/or light availabilities. Effects of species characteristics, such as photosynthetic nitrogen use efficiency and leaf mass per area, are also evaluated. The model predicts many empirically observed patterns for ecophysiological traits across species.  相似文献   

20.
To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号