首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppression of CD4+ Th1 cell-mediated autoimmune disease via immune deviation is an attractive potential therapeutic approach. CD4+ Th2 T cells specific for myelin basic protein, induced by immunization of young adult male SJL mice, suppress or modify the progression of CNS autoimmune disease. This report demonstrates that activation of non-neuroantigen-specific Th2 cells is sufficient to suppress both clinical and histological experimental allergic encephalomyelitis (EAE). Th2 cells were obtained following immunization of male SJL mice with keyhole limpet hemocyanin. Transfer of these cells did not modify EAE, a model of human multiple sclerosis, in the absence of cognate Ag. Disease suppression was obtained following adoptive transfer and subcutaneous immunization. Suppression was not due to the deletion of myelin basic protein-specific T cells, but resulted from the presence of IL-10 as demonstrated by the inhibition of Th2-mediated EAE suppression via passive transfer with either anti-IL-10 or anti-IL-10R mAb. These data demonstrate that peripheral activation of a CD4+ Th2 population specific for an Ag not expressed in the CNS modifies CNS autoimmune disease via IL-10. These data suggest that either peripheral activation or direct administration of IL-10 may be of benefit in treating Th1-mediated autoimmune diseases.  相似文献   

2.
Experimental allergic encephalomyelitis (EAE) is a CNS autoimmune disease mediated by the action of CD4(+) T cells, macrophages, and proinflammatory cytokines. IL-10 is a cytokine shown to have many anti-inflammatory properties. Studies have shown both inhibition and exacerbation of EAE after systemic IL-10 protein administration. We have compared the inhibitory effect in EAE of Il10 gene delivery in the CNS. Fibroblasts transduced with retroviral vectors expressing IL-10 could inhibit EAE. This was not associated with a prevention of cellular recruitment but an alteration in their phenotype, notably an increase in the numbers of CD8(+) T and B cells. In marked contrast, CNS delivery of adenovirus coding for mouse IL-10 or IL-10 protein performed over a wide dose range failed to inhibit disease, despite producing similar or greater amounts of IL-10 protein. Thus the action of IL-10 may differ depending on the local cytokine microenvironment produced by the gene-secreting cell types.  相似文献   

3.
4.
Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS). Cells resident within the central nervous system (CNS) are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE) was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ) receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB) integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.  相似文献   

5.
Adenovirus vectors are increasingly being used for genetic vaccination and may prove highly suitable for intervention in different pathological conditions due to their capacity to generate high level, transient gene expression. In this study, we report the use of a recombinant adenovirus vector to induce regulatory responses for the prevention of autoimmune diseases through transient expression of a TCR beta-chain. Immunization of B10.PL mice with a recombinant adenovirus expressing the TCR Vbeta8.2 chain (Ad5E1 mVbeta8.2), resulted in induction of regulatory type 1 CD4 T cells, directed against the framework region 3 determinant within the B5 peptide (aa 76-101) of the Vbeta8.2 chain. This determinant is readily processed and displayed in an I-A(u) context, on ambient APC. Transient genetic delivery of the TCR Vbeta8.2 chain protected mice from Ag-induced experimental autoimmune encephalomyelitis. However, when the Ad5E1 mVbeta8.2 vector was coadministered with either an IL-4- or IL-10-expressing vector, regulation was disrupted and disease was exacerbated. These results highlight the importance of the Th1-like cytokine requirement necessary for the generation and activity of effective regulatory T cells in this model of experimental autoimmune encephalomyelitis.  相似文献   

6.
BACKGROUND: We previously demonstrated the local production of the pleiotropic cytokine interleukin-6 (IL-6) in the central nervous system (CNS) in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. MATERIALS AND METHODS: To assess the role of IL-6 in autoimmune CNS inflammation, we administered neutralizing antibodies to IL-6 in the EAE model. Their effect was examined at the clinical and histopathological level. Levels of administered antibody and IL-6 bioactivity were followed in serum and cerebrospinal fluid (CSF). RESULTS: Systemically administered antibodies penetrated into the fluid CSF in animals in which EAE was induced. Administration of anti-IL-6 reduced the development of actively induced as well as adoptively transferred EAE and was associated with increased levels of IL-6 activity in the CSF and to a lesser extent in the serum. Anti-IL-6 was still effective when given 1 day before the onset of disease signs in adoptively transferred EAE. The disease-reducing effect of anti-IL-6 was also reflected at the pathological level by the absence of inflammatory infiltrates in the CNS. CONCLUSIONS: Our study indicates that IL-6 plays an important role in autoimmune CNS inflammation. However, due to the complex nature of the in vivo interactions of administered antibodies, the disease-reducing effect of the anti-IL-6 antibodies could be caused by neutralization of IL-6 activity or by enhancement of IL-6 activity via induction of higher IL-6 levels in the CNS.  相似文献   

7.
The human MHC class II genes are associated with genetic susceptibility to multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS of presumed autoimmune origin. These genes encode for proteins responsible for shaping immune response. The exact role of HLA-DQ and -DR genes in disease pathogenesis is not well-understood due to the high polymorphism, linkage disequilibrium, and heterogeneity of human populations. The advent of HLA class II-transgenic (Tg) mice has helped in answering some of these questions. Previously, using single-Tg mice (expressing the HLA-DR or -DQ gene), we showed that proteolipid protein (PLP)(91-110) peptide induced classical experimental autoimmune encephalomyelitis only in DR3.Abeta degrees mice, suggesting that DR3 (DRB1*0301) is a disease susceptible gene in the context of PLP. Human population studies have suggested that HLA-DQ6 (DQB1*0601) may be a protective gene in MS. To test this disease protection in an experimental model, we generated double-Tg mice expressing both HLA-DR3 and -DQ6. Introduction of DQ6 onto DR3-Tg mice led to a decrease in disease incidence on immunization with PLP(91-110) peptide indicating a dominant protective role of DQ6. This protective effect is due to high levels of IFN-gamma produced by DQ6-restricted T cells, which suppressed proliferation of encephalitogenic DR3-restricted T cells by inducing apoptosis. Our study indicates that DQ6 modifies the PLP(91-110)-specific T cell response in DR3 through anti-inflammatory effects of IFN-gamma, which is protective for experimental autoimmune encephalomyelitis. Thus, our double-Tg mouse provides a novel model in which to study epistatic interactions between HLA class II molecules in MS.  相似文献   

8.
IL-27 has been shown to play a suppressive role in experimental autoimmune encephalomyelitis (EAE) as demonstrated by more severe disease in IL-27R-deficient (WSX-1(-/-)) mice. However, whether IL-27 influences the induction or effector phase of EAE is unknown. This is an important question as therapies for autoimmune diseases are generally started after autoreactive T cells have been primed. In this study, we demonstrate maximal gene expression of IL-27 subunits and its receptor in the CNS at the effector phases of relapsing-remitting EAE including disease peak and onset of relapse. We also show that activated astrocyte cultures secrete IL-27p28 protein which is augmented by the endogenous factor, IFN-gamma. To investigate functional significance of a correlation between gene expression and disease activity, we examined the effect of IL-27 at the effector phase of disease using adoptive transfer EAE. Exogenous IL-27 potently suppressed the ability of encephalitogenic lymph node and spleen cells to transfer EAE. IL-27 significantly inhibited both nonpolarized and IL-23-driven IL-17 production by myelin-reactive T cells thereby suppressing their encephalitogenicity in adoptive transfer EAE. Furthermore, we demonstrate a strong suppressive effect of IL-27 on active EAE in vivo when delivered by s.c. osmotic pump. IL-27-treated mice had reduced CNS inflammatory infiltration and, notably, a lower proportion of Th17 cells. Together, these data demonstrate the suppressive effect of IL-27 on primed, autoreactive T cells, particularly, cells of the Th17 lineage. IL-27 can potently suppress the effector phase of EAE in vivo and, thus, may have therapeutic potential in autoimmune diseases such as multiple sclerosis.  相似文献   

9.
Converging evidence that G-CSF, the hemopoietic growth factor of the myeloid lineage, also exerts anti-inflammatory and pro-Th2 effects, prompted us to evaluate its direct therapeutic potential in autoimmune diseases. Here we report a novel activity of G-CSF in experimental allergic encephalomyelitis, a murine model for multiple sclerosis, driven by Th1-oriented autoaggressive cells. A short 7-day treatment with G-CSF, initiated at the onset of clinical signs, provided durable protection from experimental autoimmune encephalomyelitis. G-CSF-treated mice displayed limited demyelination, reduced recruitment of T cells to the CNS, and very discrete autoimmune inflammation, as well as barely detectable CNS mRNA levels of cytokines and chemokines. In the periphery, G-CSF treatment triggered an imbalance in the production by macrophages as well as autoreactive splenocytes of macrophage inflammatory protein-1alpha and monocyte chemoattractant protein-1, the prototypical pro-Th1 and pro-Th2 CC chemokines, respectively. This chemokine imbalance was associated with an immune deviation of the autoreactive response, with reduced IFN-gamma and increased IL-4 and TGF-beta1 levels. Moreover, G-CSF limited the production of TNF-alpha, a cytokine also associated with early CNS infiltration and neurological deficit. These findings support the potential application of G-CSF in the treatment of human autoimmune diseases such as multiple sclerosis, taking advantage of the wide clinical favorable experience with this molecule.  相似文献   

10.
Interleukin 7 (IL-7), originally described as a B cell growth factor, has recently been found to play a critical role in T and B lymphocyte development and function. This study evaluated the effects of IL-7 on myelin specific T cells. IL-7 strongly enhanced proliferation of proteolipid protein (PLP) 139-151 specific T cells in association with elevated secretion of the T cell growth factor IL-2. Co-stimulation with IL-7 preferentially increased the levels of pro-inflammatory cytokines secreted by PLP 139-151 specific T cells and adoptive transfer of these cells into naive recipients induced a profound enhancement of experimental autoimmune encephalomyelitis, an animal model for the human disease multiple sclerosis. These results suggest that IL-7 may be a critical co-stimulatory factor that enhances the extrathymic expansion of inflammatory T cells and may play an important role in the pathogenesis of a number of inflammatory autoimmune disorders.  相似文献   

11.
Subsidence of inflammation and clinical recovery in experimental autoimmune encephalomyelitis (EAE) is postulated to involve apoptosis of inflammatory cells. To test this concept, we examined the effects of overexpressing the long form of human FLICE-inhibitory protein, a potent inhibitor of death receptor-mediated apoptosis, in myelin oligodendrocyte glycoprotein-induced EAE in DBA/1 mice. We found that overexpression of the long form of human FLICE-inhibitory protein by retroviral gene transfer of hemopoietic stem cells led to a clinically more severe EAE in these mice compared with control mice receiving the retroviral vector alone. The exacerbated disease was evident by an enhanced and prolonged inflammatory reaction in the CNS of these animals compared with control mice. The acute phase of EAE was characterized by a massive infiltration of macrophages and granulocytes and a simultaneous increase in TNF-alpha production in the CNS. In the chronic phase of the disease, there was a prolonged inflammatory response in the form of persistent CD4(+) T and B cells in the CNS and a peripheral Th1 cytokine bias caused by elevated levels of IFN-gamma and reduced levels of IL-4 in the spleen. Our findings demonstrate that death receptor-mediated apoptosis can be important in the pathogenesis of EAE and further emphasize the need for effective apoptotic elimination of inflammatory cells to achieve disease remission.  相似文献   

12.
GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4(+) and CD8(+) T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.  相似文献   

13.
Zhang L  Yuan S  Cheng G  Guo B 《PloS one》2011,6(12):e28432
Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response.  相似文献   

14.
Multiple sclerosis (MS) is believed to be an autoimmune disease mediated by T cells specific for CNS Ags. MS lesions contain both CD4+ and CD8+ T lymphocytes. The contribution of CD4+ T cells to CNS autoimmune disease has been extensively studied in an animal model of MS, experimental autoimmune encephalomyelitis. However, little is known about the role of autoreactive CD8+ cytotoxic T cells in MS or experimental autoimmune encephalomyelitis. We demonstrate here that myelin basic protein (MBP) is processed in vivo by the MHC class I pathway leading to a MBP79-87/Kk complex. The recognition of this complex by MBP-specific cytotoxic T cells leads to a high degree of tolerance in vivo. This study is the first to show that the pool of self-reactive lymphocytes specific for MBP contain MHC class I-restricted T cells whose response is regulated in vivo by the induction of tolerance.  相似文献   

15.
Plasmacytoid dendritic cells (pDCs) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating dendritic cell population during experimental autoimmune encephalomyelitis but, unlike myeloid dendritic cells, have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of experimental autoimmune encephalomyelitis resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4(+) T cell activation, as well as IL-17 and IFN-gamma production. Moreover, CNS pDCs suppressed CNS myeloid dendritic cell-driven production of IL-17, IFN-gamma, and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4(+) T cell responses, highlighting a new role for pDCs in inflammatory autoimmune disease.  相似文献   

16.
Autoreactive CD4(+) T cells exist in normal individuals and retain the capacity to initiate autoimmune disease. The current study investigates the role of CD4(+)CD25(+) T-regulatory (T(R)) cells during autoimmune disease using the CD4(+) T cell-dependent myelin oligodendrocyte glycoprotein (MOG)-specific experimental autoimmune encephalomyelitis model of multiple sclerosis. In vitro, T(R) cells effectively inhibited both the proliferation of and cytokine production by MOG(35-55)-specific Th1 cells. In vivo, adoptive transfer of T(R) cells conferred significant protection from clinical experimental autoimmune encephalomyelitis which was associated with normal activation of autoreactive Th1 cells, but an increased frequency of MOG(35-55)-specific Th2 cells and decreased CNS infiltration. Lastly, transferred T(R) cells displayed an enhanced ability to traffic to the peripheral lymph nodes and expressed increased levels of the adhesion molecules ICAM-1 and P-selectin that may promote functional interactions with target T cells. Collectively, these findings suggest that T(R) cells contribute notably to the endogenous mechanisms that regulate actively induced autoimmune disease.  相似文献   

17.
Cytokine immunomodulation of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, has remained a formidable treatment option, but access into the CNS is hampered due to the impermeability of the blood-brain barrier. In this report, we describe the construction and characterization of CNS-homing gene delivery/therapy vectors based on avirulent Semliki Forest virus (SFV) expressing either native or mutant transforming growth factor beta 1 (TGF-beta1). Biological activity of the expressed inserts was demonstrated by PAI-1 promoter driven luciferase production in mink cells and TGF-beta1 mRNA was demonstrated in the CNS of virus treated mice by in situ hybridization and RT-PCR. Both vectors, when given intraperitoneally to EAE mice significantly reduced disease severity compared to untreated mice. Our results imply that immunomodulation by neurotropic viral vectors may offer a promising treatment strategy for autoimmune CNS disorders.  相似文献   

18.
The cytokine IL-21 is closely related to IL-2 and IL-15, a cytokine family that uses the common gamma-chain for signaling. IL-21 is expressed by activated CD4(+) T cells. We examined the role of IL-21 in the autoimmune disease experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. IL-21 administration before induction of EAE with a neuroantigen, myelin oligodendrocyte glycoprotein peptide 35-55, and adjuvant enhanced the inflammatory influx into the CNS, as well as the severity of EAE. Autoreactive T cells purified from IL-21-treated mice transferred more severe EAE than did the control encephalitogenic T cells. No such effects were observed when IL-21 was administered after EAE progressed. Additional studies demonstrated that IL-21 given before the induction of EAE boosted NK cell function, including secretion of IFN-gamma. Depletion of NK cells abrogated the effect of IL-21. Therefore, IL-21, by affecting NK cells, has differential effects during the initiation and progression of autoimmune responses against neuroantigens.  相似文献   

19.
It has become increasingly apparent in studies of mutant mice and observations of disease that cytokine production by fully committed effector T cells within the Th1 and Th2 phenotype can vary within each group. This can potentially influence the type and effectiveness of a given immune response. The factors responsible for inducing variable Th1 and Th2 subtype responses have not been well established. Using transgenic mice expressing the myelin basic protein-specific TCR, we demonstrate here that two distinct populations of Th2 cells that are characterized primarily by differential IL-4 and IL-5 expression levels can be generated depending upon the levels of IFN-gamma present at the time of priming. We also demonstrate that populations expressing high levels of IL-4 relative to IL-5 vs those with intermediate levels of IL-4 relative to IL-5 are stable and possess distinct effector functions in an experimental autoimmune encephalomyelitis model.  相似文献   

20.
The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher rate of proliferation and increased production of inflammatory cytokines, resulting in severe clinical disease. Together, our results demonstrate that the cannabinoid system within the CNS plays a critical role in regulating autoimmune inflammation, with the CNS directly suppressing T-cell effector function via the CB(2) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号