首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Y Shiro  I Morishima 《Biochemistry》1986,25(20):5844-5849
The heme environmental structures of lactoperoxidase (LP) have been studied by the use of hyperfine-shifted proton NMR and optical absorption spectra. The NMR spectra of the enzyme in native and cyanide forms in H2O indicated that the fifth ligand of the heme iron is the histidyl imidazole with an anionic character and that the sixth coordination site is possibly vacant. These structural characteristics are quite similar to those of horseradish peroxidase (HRP), suggesting that these may be prerequisite to peroxidase activity. The pH dependences of the spectra of LP in cyanide and azide forms showed the presence of two ionizable groups with pK values of 6 and 7.4 in the heme vicinity, which is consistent with the kinetic results. The group with pK = 7.4 is associated with azide binding to LP in a slow NMR exchange limit, which is in contrast to the fast entry of azide to HRP.  相似文献   

2.
Single-proton, exchangeable resonances have been detected in the high spin ferric hemoproteins, met-aquo myoglobin and horseradish peroxidase, which can be assigned to the proximal histidyl imidazole by virtue of their very large hyperfine shifts. While this proton is relatively labile in myoglobin, it is exchangeable in HRP only at extreme pH values, indicating a buried heme pocket. The insensitivity of the imidazole peak of HRP to substrate binding argues against direct interaction of imidazole and substrate.  相似文献   

3.
Proton NMR spectra of a model of low-spin cyanide complexes of ferric hemoproteins indicate that two broad single-protein resonances from the axial imidazole can be resolved outside the diamagnetic spectral region. Upon deprotonation of the imidazole in the model, the upfield resonance shifts dramatically to higher field, suggesting that its position may reflect the degree of hydrogen bonding or proton donation of the imidazole. Met-cyano myoglobin reveals a pair of such broad peaks in the regions expected for an essentially neutral axial imidazole. In the cyano complexes of horseradish peroxidase and cytochrome c peroxidase, a pair of single-proton resonances are located which are assigned to the same imidazole protons on the basis of their linewidth and shift changes upon altering the heme substituents. The upfiled proton, however, is found at much higher field than in metMbCN. The upfield bias of this resonance is taken as evidence for appreciable imidazolate character for the axial ligand in these heme peroxidases.  相似文献   

4.
Resonance Raman scattering from cow milk lactoperoxidase (LPO) and its complexes with various electron donors and inhibitors was investigated. The Raman spectrum of LPO is strikingly close to that of hog intestinal peroxidase but distinctly dissimilar to that of horseradish peroxidase (HRP). The v10 frequency suggested the six-coordinate high-spin structure of heme for native LPO in contrast with the five-coordinate high-spin structure for HRP. For the v10 band, benzohydroxamic acid caused a frequency shift with HRP but not with LPO. Guaiacol, o-toluidine, and histidine brought about a frequency shift of the v4 mode for LPO but not for HRP. The frequency shift was restored upon removal of the substrate or inhibitor by dialysis. The down shift of the v4 frequency is considered to represent an appreciable donation of electrons from the substrate or inhibitor to the porphyrin LUMO and thus their direct interaction with the heme group. From the relative intensity of the shifted and unshifted v4 lines, the dissociation constant was determined to be Kd = 52 mM for guaiacol and Kd = 87 mM for histidine at pH 7.4. The binding of histidine was relatively retarded in the presence of sulfate anion (Kd = 150 mM for 0.53 M sulfate present), and imidazole alone yielded no frequency shift, indicating the binding of the carboxyl group of histidine to the protein cationic site on one hand and a weak charge-transfer interaction between the imidazole group and the heme group on the other.  相似文献   

5.
The temperature dependencies of the infrared absorption CO bands of carboxy complexes of horseradish peroxidase (HRP(CO)) in glycerol/water mixture at pH 6.0 and 9.3 are interpreted using the theory of optical absorption bandshape. The bands' anharmonic behavior is explained assuming that there is a higher-energy set of conformational substates (CSS(h)), which are populated upon heating and correspond to the protein substates with disordered water molecules in the heme pocket. Analysis of the second moments of the CO bands of the carboxy complexes of myoglobin (Mb(CO)) and hemoglobin (Hb(CO)), and of HRP(CO) with benzohydroxamic acid (HRP(CO)+BHA), shows that the low energy CSS(h) exists also in the open conformation of Mb(CO), where the heme pocket is spacious enough to accommodate a water molecule. In the HRP(CO)+BHA and closed conformations of Mb(CO) and Hb(CO), the heme pocket is packed with BHA and different amino acids, the CSS(h) has much higher energy and is hardly populated even at the highest temperatures. Therefore only motions of these amino acids contribute to the band broadening. These motions are linked to the protein surface and frozen in the glassy matrix, whereas in the liquid solvent they are harmonic. Thus the second moment of the CO band is temperature-independent in glass and is proportional to the temperature in liquid. The temperature dependence of the second moment of the CO peak of HRP(CO) in the trehalose glass exhibits linear coupling to an oscillator. This oscillator can be a moving water molecule locked in the heme pocket in the whole interval of temperatures or a trehalose molecule located in the heme pocket.  相似文献   

6.
S Modi  D V Behere  S Mitra 《Biochemistry》1989,28(11):4689-4694
The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.  相似文献   

7.
The pH dependence of the proton NMR chemical shifts of met-cyano and deoxy forms of native and reconstituted myoglobins reflects a structural transition in the heme pocket modulated by a single proton with pK 5.1-5.6. Comparison of this pH dependence of sperm whale and elephant myoglobin and that of the former protein reconstituted with esterified hemin eliminates both the distal histidine as well as the heme propionates as the titrating residue. Reconstitution of sperm whale met-cyano myoglobin with hemin modified at the 2,4-positions leads to a systematic variation in the pK for the structural transition, thus indicating the presence of a coupling between the titrating group and the heme pi system. The results are consistent with histidine FG3 (His-FG3) being the titrating group, and a donor-acceptor pi-pi interaction between its imidazole and the heme is proposed.  相似文献   

8.
Song Y  Mao J  Gunner MR 《Biochemistry》2006,45(26):7949-7958
The pK(a)s of ferric aquo-heme and aquo-heme electrochemical midpoints (E(m)s) at pH 7 in sperm whale myoglobin, Aplysia myoblogin, hemoglobin I, heme oxygenase 1, horseradish peroxidase and cytochrome c oxidase were calculated with Multi-Conformation Continuum Electrostatics (MCCE). The pK(a)s span 3.3 pH units from 7.6 in heme oxygenase 1 to 10.9 in peroxidase, and the E(m)s range from -250 mV in peroxidase to 125 mV in Aplysia myoglobin. Proteins with higher in situ ferric aquo-heme pK(a)s tend to have lower E(m)s. Both changes arise from the protein stabilizing a positively charged heme. However, compared with values in solution, the protein shifts the aquo-heme E(m)s more than the pK(a)s. Thus, the protein has a larger effective dielectric constant for the protonation reaction, showing that electron and proton transfers are coupled to different conformational changes that are captured in the MCCE analysis. The calculations reveal a breakdown in the classical continuum electrostatic analysis of pairwise interactions. Comparisons with DFT calculations show that Coulomb's law overestimates the large unfavorable interactions between the ferric water-heme and positively charged groups facing the heme plane by as much as 60%. If interactions with Cu(B) in cytochrome c oxidase and Arg 38 in horseradish peroxidase are not corrected, the pK(a) calculations are in error by as much as 6 pH units. With DFT corrected interactions calculated pK(a)s and E(m)s differ from measured values by less than 1 pH unit or 35 mV, respectively. The in situ aquo-heme pK(a) is important for the function of cytochrome c oxidase since it helps to control the stoichiometry of proton uptake coupled to electron transfer [Song, Michonova-Alexova, and Gunner (2006) Biochemistry 45, 7959-7975].  相似文献   

9.
D R N?ssel 《Histochemistry》1983,79(1):95-104
Seven different heme peptides were used in neuronal uptake and labelling experiments in flies. The peptides were: catalase, lactoperoxidase, hemoglobin, horseradish peroxidase (HRP), myoglobin, cytochrome c and microperoxidase. All of these peroxidase active peptides were taken up by lesioned neurons and the markers spread throughout the entire cells resulting in a detailed labelling of their processes and cell bodies. Only HRP was taken up by intact neurons. Attempts were made to block axonal transport of HRP with colchicine, vinblastine and 2,4-dinitrophenol. These attempts were unsuccessful and it is proposed that HRP and the other six heme peptides testes are non-selectively diffusing through lesioned or damaged nerve cells in flies.  相似文献   

10.
On the basis of optical difference spectra, lactoperoxidase (LPO) was shown to form a 1:1 complex with aromatic donor molecules: resorcinol, hydroquinone, phenol, p-cresol, guaiacol, aniline, and benzohydroxamic acid. As compared with horseradish peroxidase (HRP), the values of the dissociation constant, Kd, of LPO-donor complexes were found to be 4-720-fold larger and were not greatly changed in the presence of KCN and by changes in pH in the range 4-9. The apparent enthalpy and entropy of the binding reactions were found to be -13 kJ mol-1 and -29 J mol-1 K-1, respectively, somewhat smaller (in absolute value) than the corresponding values of HRP. The difference spectra of LPO-donor complexes resembled each other, in contrast to the case of HRP, and the bindings of the donors to LPO occurred in a competitive fashion between the donors. Incubation of LPO with phenylhydrazine and hydrogen peroxide markedly depressed donor binding, the intensity of the Soret band, and the catalytic activity, probably as the result of formation of meso-phenyl derivatives of the heme. These findings suggest that the binding of aromatic donors to LPO occurs at a specific site, probably near the heme edge, where the electron transfer in the peroxidase reaction may take place.  相似文献   

11.
J H Bradbury  J A Carver 《Biochemistry》1984,23(21):4905-4913
In paramagnetic metmyoglobin, cyanomyoglobin (CNMb), and deoxymyoglobin, His-36 has a high pK (approximately 8), and the NMR titration behavior of the H-2 resonance is perturbed, due to the presence at low pH of a hydrogen bond with Glu-38, which is broken at high pH. The His-36 H-4 resonance shows no shift with pK approximately 8 because of two opposing chemical shift effects but monitors the titration of nearby Glu-36 (pK = 5.6). In diamagnetic derivatives [(carbon monoxy)myoglobin (COMb) and oxymyoglobin (oxyMb)], the titration behavior of His-36 H-2 and H-4 resonances is normalized (pK approximately 6.8). The very slight alkaline Bohr effect in sperm whale myoglobin (Mb) is interpreted in terms of the pK change of His-36 from deoxyMb to oxyMb and compensating pK changes in the opposite direction of other unspecified groups. In sperm whale COMb at 40 degrees C, the distal histidine (His-64) and His-97 have pK values of 5.0 and 5.9. The meso proton resonances remote from these groups do not show a titration shift, but the nearby gamma-meso proton (pK = 5.3) responds to titration of both histidines, and the upfield Val-68 methyl at -2.3 ppm (pK = 4.7) witnesses the titration of nearby His-64. At 20 degrees C, the latter resonance is reduced in size, and a second resonance occurs at -2.8 ppm, which is insensitive to pH and, hence, more remote from His-64. Both resonances arise from two conformations of Val-68 in slow equilibrium. In oxyMb at 20 degrees C, only the latter resonance is observed, presumably because of the steric restrictions imposed by the hydrogen bond between ligand and His-64 in oxyMb, which is not present in COMb. In oxyMb the pK of His-97 (5.6) is similar to that of the meso proton resonances (5.5) and to the pK of other pH-dependent processes, including the very small acid Bohr effect. It is likely that these processes are controlled by the titration of His-97.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The 1H NMR characteristics of the high-spin metmyoglobin from the mollusc Aplysia limacina have been investigated and compared with those of the myoglobin (Mb) from sperm whale. Aplysia metMb exhibits a normal acid----alkaline transition with pK approximately 7.8. In the acidic form, the heme methyl and meso proton resonances have been assigned by 1H NMR using samples reconstituted with selectively deuterated hemins and in the latter case by 2H NMR as well. On the basis of the methyl peak intensities and shift pattern, heme rotational disorder could be established in Aplysia Mb; approximately 20% of the protein exhibits a reversed heme orientation compared to that found in single crystals. Three meso proton resonances have been detected in the upfield region between -16 and -35 ppm, showing that the chemical shift of such protons can serve as a diagnostic probe for a pentacoordinated active site in hemoproteins, as previously shown to be the case in model compounds. The temperature dependence of the chemical shift of the meso proton signals deviates strongly from the T-1 Curie behavior, reflecting the presence of a thermally accessible Kramers doublet with significant S = 3/2 character. Nuclear Overhauser effect, NOE, measurements on Aplysia metMb have provided the assignment of individual heme alpha-propionate resonances and were used to infer spatial proximity among heme side chains. The hyperfine shift values for assigned resonances, the NOE connectivities, and the NOE magnitudes were combined to reach a qualitative picture of the rotational mobility and the orientation of the vinyl and propionate side chains of Aplysia metMb relative to sperm whale MbH2O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The interaction of aromatic donor molecules with lactoperoxidase (LPO) was studied using 1H-NMR and optical difference spectroscopy techniques. pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with pKa of 6.1) which is presumably a distal histidine. Dissociation constants evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements were found to be an order of magnitude larger than those for binding to horse radish peroxidase (HRP), indicating relatively weak binding of the donors to LPO. The dissociation constants evaluated in presence of excess of I- and SCN- showed a considerable increase in their values, indicating that the iodide and thiocyanate ions compete for binding at the same site. The dissociation constant of the substrate binding was, however, not affected by cyanide binding to the ferric centre of LPO. All these results indicate that the organic substrates bind to LPO away from the ferric center. Comparison of the dissociation constants between the different substrates suggested that hydrogen bonding of the donors with the distal histidine amino acid, and hydrophobic interaction between the donors and the active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the LPO-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative and relatively low compared to those for binding to HRP. The distances of the substrate protons from the ferric center were found to be in the range 9.4-11.1 A which are 2-3 A larger than those reported for the HRP-substrate complexes. These structural informations suggest that the heme in LPO may be more deeply buried in the heme crevice than that in the HRP.  相似文献   

14.
Cyanide ion has been utilized to probe the heme environment of the ferric states of horseradish peroxidase, lactoperoxidase and chloroperoxidase. The 15N-NMR signal for cyanide bound to these enzymes is located in the downfield region from 578 to 412 ppm (with respect to the nitrate ion reference). The corresponding signal for met-forms of hemoglobin, myoglobin and cytochrome c is much further downfield in the 1047-847 ppm region. The signal position for peroxidases is quite invariant with pH in the physiological ranges. The upfield bias for peroxidase chemical shifts must reflect unique trans iron(III) ligand types and/or proximal-group hydrogen bonding or steric effects. Model compound studies reveal a significant upfield cyanide 15N shift with addition of agents capable of hydrogen-bonding to the coordinated cyanide ion. An even more striking upfield shift of 277 ppm is associated with deprotonation of a trans imidazole residue. The distinctive chemical shifts observed for the cyano ligand in peroxidases support the hypothesis that a distal hydrogen-bonding network and perhaps a polar, basic trans ligand are essential for O-O bond activation by peroxidases.  相似文献   

15.
The low-spin, cyanide-ligated ferric complex of the intact bovine granulocyte myeloperoxidase (MPO-CN) has been studied by proton nuclear magnetic resonance utilizing the nuclear Overhauser effect (NOE). This is the largest globular protein (approximately 1.5 x 10(5) for the intact alpha 2 beta 2 tetrameric species) for which successful NOEs have been observed without serious interference of spin diffusion, and demonstrably confirms the utility of such studies on large paramagnetic as compared to diamagnetic proteins. The 1H NMR spectrum of MPO-CN is found to have a remarkable similarity in the number, resonance pattern, and metal ion-induced relaxation properties of the resolved, hyperfine-shifted resonances to those reported earlier for the analogous complex of bovine lactoperoxidase (LPO-CN); moreover, the interproton connectivities between pairs of hyperfine-shifted proton sets, as reflected by the NOEs, are also essentially the same (Thanabal, V., and La Mar, G. N. (1989) Biochemistry 28, 7038-7044). Since the extracted prosthetic group of lactoperoxidase is a porphyrin with proposed functionalization of the 8-methylene group (Nichol, A. W., Angel, L. A., Moon, T., and Clezy, P. S. (1987) Biochem. J. 247, 147-150), we interpret the resultant similarity in 1H NMR spectral parameters for LPO-CN and MPO-CN as indicating that the prosthetic groups in MPO and LPO are very similar, and hence likely both porphyrins with a similarly functionalized periphery that allows covalent linkage to the protein matrix. The hyperfine shift pattern of the broadest resolved lines lead to their assignment to the axial histidyl imidazole side chain. Two pairs of resonances are found to have similar relaxation properties and/or dipolar as similarly shifted resonances that arise from a distal His and Arg in horseradish peroxidase (as also found in LPO-CN), and suggest that MPO also possesses these catalytically functional residues in the distal heme pocket.  相似文献   

16.
High-resolution proton NMR spectra are reported for the paramagnetic ferric native and cyano complexes of the five major horseradish root peroxidase (HRP) isoenzymes (A1, A2, A3, B, and C). Axial imidazole resonances are observed in the native and cyano-complex spectra of all the isoenzymes, thus indicating the presence of a common axial histidine ligand. Proton NMR spectra outside the usual diamagnetic region are identical for sets of A1 and A2 isoenzymes and for the B and C isoenzyme set. Variation in heme residue chemical shift positions may be controlled in part by porphyrin vinyl side chain-protein interactions. Diverse upfield spectra among the isoenzymes reflect amino acid substitutions and/or conformational differences near the prosthetic group, as signals in this region must result from amino acid residues in proximity to the heme center. Acid-base dependence studies reveal an "alkaline" transition that converts the native high-spin iron (III) porphyrin to the low-spin state. The transition occurs at pH 9.3, 9.4, 9.8, and 10.9 for respective HRP A1, A2, A3, and C isoenzymes, respectively. Significantly, this ordering also reflects specific activities for the isoenzymes in the order A1 = A2 greater than A3 greater than B = C. Identical proton NMR spectra for A1/A2 and B/C isoenzyme sets parallel equivalent specific activities for members of a particular set. Proton NMR spectra thus appear to be highly sensitive to protein modifications that affect catalytic activity.  相似文献   

17.
Oxidation of SCN-, Br-, and Cl- (X-) by horseradish peroxidase (HRP) and other plant and fungal peroxidases results in the addition of HOX to the heme vinyl group. This reaction is not observed with lactoperoxidase (LPO), in which the heme is covalently bound to the protein via two ester bonds between carboxylic side chains and heme methyl groups. To test the hypothesis that the heme of LPO and other mammalian peroxidases is protected from vinyl group modification by the hemeprotein covalent bonds, we prepared the F41E mutant of HRP in which the heme is attached to the protein via a covalent bond between Glu41 and the heme 3-methyl. We also examined the E375D mutant of LPO in which only one of the two normal covalent heme links is retained. The prosthetic heme groups of F41E HRP and E375D LPO are essentially not modified by the HOBr produced by these enzymes. The double E375D/D225E mutant of LPO that can form no covalent bonds is inactive and could not be examined. These results unambiguously demonstrate that a single heme-protein link is sufficient to protect the heme from vinyl group modification even in a protein (HRP) that is normally highly susceptible to this reaction. The results directly establish that one function of the covalent heme-protein bonds in mammalian peroxidases is to protect their prosthetic group from their highly reactive metabolic products.  相似文献   

18.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics.  相似文献   

19.
The proton nuclear magnetic resonance spectra of several chloroperoxidase-inhibitor complexes have been investigated. Titrations of chloroperoxidase with azide, thiocyanate, cyanate, or nitrite ions indicate that only the chloroperoxidase-thiocyanate complex exhibits slow ligand exchange on the 360-MHz NMR time scale. The temperature dependence of the proton NMR spectra of the complexes suggests that, although the complexes are predominantly low-spin ferric heme iron, a spin equilibrium is present presumably between S = 1/2 and S = 5/2 states. The pH dependence of the proton NMR spectra of the psuedo-halide-chloroperoxidase complexes was examined at 360 and 90 MHz. Chloroperoxidase complexes with azide and cyanate show similar behavior; 360-MHz proton spectra are readily observed at low pH (less than 5.0) but not at high pH. At high pH, the ligand exchange rate falls in an intermediate time range. When the complexes are examined at 90 MHz, however, spectra consisting of averaged signals are observed. The chloroperoxidase-thiocyanate complex does not form at high pH values; the proton NMR spectrum observed is that of native chloroperoxidase. The pKa for the chloroperoxidase-thiocyanate heme-linked ionizable amino acid residue falls between 4.2 and 5.0. Only an averaged azide signal was observed in the nitrogen-15 NMR spectra for solutions that contained the azide complex of chloroperoxidase, horseradish peroxidase, and myoglobin.  相似文献   

20.
Plant peroxidases, as typified by horseradish peroxidase (HRP), primarily catalyze the one-electron oxidation of phenols and other low oxidation potential substrates. In contrast, the mammalian homologues such as lactoperoxidase (LPO) and myeloperoxidase primarily oxidize halides and pseudohalides to the corresponding hypohalides (e.g., Br(-) to HOBr, Cl(-) to HOCl). A further feature that distinguishes the mammalian from the plant and fungal enzymes is the presence of two or more covalent bonds between the heme and the protein only in the mammalian enzymes. The functional roles of these covalent links in mammalian peroxidases remain uncertain. We have previously reported that HRP can oxidize chloride and bromide ions, but during oxidation of these ions undergoes autocatalytic modification of its heme vinyl groups that virtually inactivates the enzyme. We report here that autocatalytic heme modification during halide oxidation is not unique to HRP but is a general feature of the oxidation of halide ions by fungal and plant peroxidases, as illustrated by studies with Arthromyces ramosus and soybean peroxidases. In contrast, LPO, a prototypical mammalian peroxidase, is protected from heme modification and its heme remains intact during the oxidation of halide ions. These results support the hypothesis that the covalent heme-protein links in the mammalian peroxidases protect the heme from modification during the oxidation of halide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号