首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational energy calculations using an empirical conformational energy program for peptides (ECEPP) were carried out on 20 N-acetyl- N′-methylamides of Gly-X and X-Gly depeptides, where X = Ala, Asn, Asp, Gly, Phe, Ser, Thr, Tyr, Val, and Pro, and also of Leu-Gly. Each depeptde was found to have 25 or more low-energy minima, except Gly-Thr, which had only 11 low-energy minima because of the stable side chian-backbone hydrogen present in all low-energy conformation. As a group, the stble chain-backbone hydrogen bonds present in all low-energy conformations. As a group, the Gly-containing dipeptides were calculated in all low-energy prpensity for formation of bends than the Ala-containing depeptides. The X- Gly dipeptides were calculated to favor bends more than the Gly-X dipeptides, primarlly because of the high stability of the type II bend in X-Gly dipeptides. These results are in agreement with obseved occurrences of bends in the x-ray structures of globular proteins. The calculated conformation properties were found to be in good agreement with experimental results.  相似文献   

2.
Conformational energy calculations using an empirical conformatinol energy program for peptides (ECEPP) werer carried out on 16 N-acetyl-N′-methylamides of Ser-X and X- Ser dipeptides, where X = Ala, Asn, Asn, Asp, Gly, Phe, Ser, Thr, and Val, and on Pro-Ser. As with the other dipeptides studied in this serites, intraresidue interactions found to dominate over interresidue interactions in determining conformational properties. The Ser-containing dipeptides (except for those with a pro or Gly residue) were found to have unusually low calculated bend probailities, in disagreement observations on proteins; this discrepancy probably arises becuse of sovent effects (not included in the computations). The Ser-X dipeptides were calculated to have a lower preference for bends than the X-Ser dipeptides.  相似文献   

3.
4.
Conformational energy calculations using an empirical conformational energy program for peptides (ECEPP) were carried out on 17 N-acetyl-N′-methylamides of Ala-X and X-Ala dipeptides, Where X = Ala, Asn, Asp, Gly, Phe, Ser, Tyr, Val, and Pro. Each dipeptide was found to have many low-energly minima, some of which corresponded to bend structures. The stability of bends was found to depend on the amino acid composition and sequence, with the Ala-X dipeptide generally favoring bends more than the X-Ala dipeptide for a particular X. In bends and nonbends alike, intraresidue interactions dominate over interresidue interactions in determining conformational propeties. The calcutions were shown to be in good agreement with available experimental data.  相似文献   

5.
The x-ray diffraction analyses of three N- and C-terminally blocked L , D dipeptides, namely t-Boc-D -Leu-L -Leu-OMe ( 1 ), t-Boc-L -Ile-D -alle-OMe ( 2 ), and t-Boc-D -aIle-L -Ile-OMe (3) containing enantiomeric or diastereomeric amino acid residues have been carried out. The structures were determined by direct methods and refined anisotropically to final R factors of 0.077. 0.058. and 0.072 for ( 1 ) ( 2 ) and ( 3 ), respectively. Peptides 1–3 all assume a similar U-shaped structure with ? and ψ torsion angles cosrresponding to one of the possible calculated minimum energy regions (regions E and G for L residues, and F*. D* and H* for D residues). The peptide backbones of 1-3 are almost super-imposable [provided that the appropriate inversion of the chiral centers of ( 2 ) is made]. Side-chain conformations of Leu residues in peptide ( 1 ) are g? (tg?) for the L -Leu residue and the mirrored g+ (tg+) for the D -Leu residue; however, in peptides ( 2 ) and ( 3 ) the conformations of the isoconfiguralional side chains of the Ile or allo-Ile residues are (g?t) t and (tg+) tfor the L -Ile and the D -allo-Ile moieties, respectively. In all cases, these conformations correspond to the more populated conformers of β-branched residues statistically found in crystal structures of small peptides. The results seem to indicate that, at least in short peptides with enantiomeric or diastereoisomeric residues, the change in chirality in the main-chain atoms perturbs the backbone conformation to a lesser extent and the side chain conformation to a greater extent. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Conformational energy calculations using an Empirical Conformational Energy Program for Peptides (ECEPP) were carried out on the N-acetyl-N′-methylamides of Pro-X, where X = Ala, Asn, Asp, Gly, Leu, Phe, Ser, and Val, and of X-Pro, where X = Ala, Asn, Gly, and Pro. The conformational energy was minimized from starting conformations which included all combinations of low-energy single-residue minima and several standard bend structures. It was found that almost all resulting minima are combinations of low-energy single-residue minima, suggesting that intra residue interactions predominate in determining conformation. The calculations also indicate, however, that inter residue interactions can be important. In addition, librational entropy was found to influence the relative stabilities of some minima. Because of the existence of 10–100 low-energy minima for each dipeptide, the normalized statistical weight of an individual minimum rarely exceeds 0.3, suggesting that these dipeptides have considerable conformational flexibility and exist as statistical ensembles of low-energy structures. The propensity of each dipeptide to form bend conformations was calculated, and the results were compared with available experimental data. It was found that bends are favored in Pro-X dipeptides because ?Pro is fixed by the pyrrolidine ring in a conformation which is frequently found in bends, but that bends are not favored in X-Pro dipeptides because interactions between the X residue and the pyrrolidine ring restrict the X residue to conformations which are not usually found in bends.  相似文献   

7.
In an attempt to better our understanding of the conformational stabilities in RNAs, an intensive theoraticl study has been carried out on one of its dimeric subunits, ApA, using an improved set of atom-atom interaction energy parameters and an improved version of energy-minimization technique. The C(3′)0endo and the C(2′)-endo sugar ApA units were sperately considered and 38 probable conformations have been analyzed in each case. The total potential energy, comprising nonbonded, electrostatic, and torsional contributions, was minimized by varying all seven relevant dihedral angles simumtaneously. The result reveal that 17 conformations in the case of C(3′)-endo sugar ApA and 7 confomations in the case of C(2′)-endo sugar ApA unit, the lowest energy conformation corresponds to a nonhelical structure and the A-RNA and the Watson-Crick-yype conformations lie at energy levels of about 0.5 and 1.0 Kcal/mo., respectively, above the lowest energy found. For ApA with the lops of different types in the backbone and they all differ in energies by about 3.5 Kcal/mol with refrence to the lowest energy founs. It is noted that the order ofmprefrence of the base stacking is observed in the A-RNA and the Watson-Crick type conformers. The ApA unit with C(2′)-endo sugar is forced to assume phosphodiester conformations with large deviations fom the expected staggered conformations compared to the ApA unit with C(3′)-endo sugar. The result obtained for ApA are discussed with refrence to those previously obtained for the dApdA unit. Te theoretical predictions are compared with the experimental data on the tRNAPhe crystal, as well as those on fibrous RNAs and RNa subunitlike crystal structures. This study brings out many important aspects of the conformational stability of ApA which have been missed by studies made by others on this system.  相似文献   

8.
Conformational analysis of two pairs of synthetic cyclodipeptides formed by interaction of both side chain functional groups ( , and ) and of the main and side chains ( , and ) was achieved by the method of molecular mechanics. The energetically optimal conformational states of the molecules under study were determined. It was shown that the conformational motility of cyclic system of the compounds under study depends on the relative arrangement of the amide groups and the number of atoms in the cycle.  相似文献   

9.
Empirical energy calculations on cyclo-Gly-X with X- Phe, Tyr, Val, and Leu as a function of the side-chain torsion angles χ indicate that the conformation of minimum energy are characterized by χ1 = 60°, χ2 = 90° for Phe and Try, χ1 = ?60° for Val and χ1 = ?60°, χ2 = 180° and χ1 = 60° and χ2 = 150° for Leu. The minimum energy conformation of cyclo-Gly-Phe and cyclo-Gly-Val have the side chains of Phe and Val stacked over the poperazinedione ring as suggested by NMR and found for cyclo-Gly-Tyr crystal structure. In contrast, the Leu side chain is expected to exist in an extended or a quasi-folded form.  相似文献   

10.
Conformational studies of -glucans   总被引:1,自引:0,他引:1  
A study of the effect of linkage on the possible conformations of di-and polysaccharides of α-D -glucose and also the probable intramolecular hydrogen bonds has been made. The differences in the nature of linkage is shown to effect the energetically preferred conformations; (1 → 2) linkages lead only to righthanded helical conformations, (1 → 3) linkages lead to extended as well as both left and righthanded helical conformations; (1 → 4) linkages lead to both right-and lefthanded wide helical conformations. The possible hydrogen bonds between adjacent residues are also dependent on the nature of the linkage. A comparison of the conformational data of α-D -glucans with those of β-D -glucans has indicated that the favored conformations and hydrogen bonds between contiguous residues in the chain are influenced by the configuration at the anomeric carbon atom in all the three types of polysaccharides. From the energy calculations a probable conformation (?M = ?10°, ψM = ?30°, ?N = ?23°, ψN = ?19°) has also been proposed for crystalline mycodextran in conformity with x-ray data. This conformation contains two types of hydrogen bonds between contiguous residues one between 0–2 and 0–3 atoms at (1 → 4) linkage and the other between 0?2 and 0–4 atoms at (1 → 3) linkage in the chain. The conformation of maltose unit (?10°,?30°) that is likely to occur in the crystalline mycodextran coincides with the minimum energy conformation of maltose.  相似文献   

11.
As a continuation of our theoretical studies on nucleic acid subunit systems, in this article we consider the case of the tetranucleoside d-GpCpGpC, the minimally ideal representative unit for analyzing the relative stabilities of different forms of homo- and mixed helical conformation of polynucleotides. The four sugar rings are kept so as to generate B-genus, B+A genus and Z-genus conformations. Twenty five helical conformational states which resulted from judicious mixing of A-, B-, C-, W-, and Z-, states locally are subjected to energy minimization permitting the 19 dihedral angles to vary simultaneously. Conformational states corresponding to regular helical forms and mixed helical forms, when analyzed provide valuable information as to the local conformational flexibility and transitions available to polynucleotides.  相似文献   

12.
Conformational energy calculations were carried out on the hypothalamic hormone melanostatin, a tripeptide with the primary structure H-L-Pro-L-Leu-Gly-NH2. The calculated lowest energy conformation was a type II beta bend, very similar to that reported in an X-ray crystal study. This conformation, however, was only one of 109 low-energy structures (less than or equal to 3 kcal/mol above the global minimum), indicating that the molecule in solution exists as an ensemble of conformations and is very flexible, in agreement with relaxation data from n.m.r. measurements. A statistical analysis yielded an average end-to-end distance of 6.8 A and a bend probability of 0.62, suggesting that, in nonpolar solvents, bend structures predominate within the statistical ensemble. The statistical analysis, however, also yielded a probability of only 0.11 for the occurrence of a 4 leads to 1 hydrogen bond. Hence, the calculations show that, although bend conformations predominate, bends would be difficult to observe in solution if the experiments were designed only to detect 4 leads to 1 hydrogen bonds.  相似文献   

13.
A model of the Actinomycin structure is derived on the basis of theoretical calculations taking into account available IR, NMR and x-ray experimental data. This model contains two intercycle hydrogen bonds and accounts for all the experimental evidence.  相似文献   

14.
15.
The conformations of the four 1-amino-1-deoxy-D-pentitols and their hydrochlorides in deuterium oxide solution have been analyzed by 250-MHz, 1H-n.m.r. spectroscopy. The data indicate that the D-arabino (2) and D-lyxo (3) isomers adopt extended, planar, zigzag conformations, whereas the D-xylo (4) and D-ribo (1) isomers have the carbon chain in a nonplanar, “sickle” arrangement. The conformational assignments parallel closely those previously advanced for various related series of acetylated derivatives in organic solvents, and for nonacetylated analogs in solution and in the crystalline state. The spectral changes that take place in solution upon converting the amines 1–4 into their amine-salt forms are discussed, and the conformational data are considered in relation to the reactivity of 1–4 on deamination with nitrous acid and with respect to related reactions leading to ring closure under kinetic conditions.  相似文献   

16.
The conformational free energy of armadillo metmyoglobin was examined over a pH range of 4.4-8.0 and a guanidinium chloride concentration of 0-2.3 M. For isothermal unfolding at 25 degrees essentially the same value was obtained for the conformational free energy from all the data: 27 +/- 2 kJ/mol. These data suggest that the armadillo has the least stable metmyoglobin of any mammal thus far examined. The cooperativity of the unfolding with respect to denaturant is considerably less than for other mammalian myoglobins. On unfolding only three to four side chains with a pKA of 6 in the unfolded protein are protonated instead of the six found for horse and sperm whale myoglobins.  相似文献   

17.
Empirical conformational energy calculations have been carried out on the molecule retro-all-D -methionine enkephalin. Low-energy conformers were found by energy minimization and conformational search procedures. The lowest energy conformers wee found toi have some stereochemical relationship to the calculated normal met-enkephalin conformers, but they were not retro-all-D -equivalent to the Met-enkephalin structures. The retro-all-D -equivalent conformations were ~10 kcal/mol higher energy than the low-energy conformers found here. A structural comparison between the retro-all-D -conformers and the met-enkephalin conformers shows hat one cannot rely solely on topochemical analysis to predict biological activity for linear retro-all-D -peptides.  相似文献   

18.
The conformational characteristics of the deoxydinucleoside monophosphates with adenine and thymine bases in all possible sequences, namely, dApdA, dApdT, dTpdA, and dTpdT have been studied using an improved set of energy parameters to calculate the total potential energy and an improved set of energy parameters to calculate the total potential energy and an improved version of the minimization technique to minimize the total energy by allowing all seven dihedral angles of the molecular fragment to vary simultaneously. The results reveal that the most preferred conformation in all these units usually corresponds to one of the four helical conformations, namely, the A-DNA, B-DNA, C-DNA, and Watson-Crick DNA models. These helical conformations differ in energies by about 3 kcal/mol with respect to one another. The conformations which could promote a loop or bend in the backbone are, in general, less stable by about 3.5 kcal/mol with respect to the respective lowest-energy helical conformation. The results indicate that there is a definite influence of bases and their actual sequences on the preferred conformations of the deoxydinucleoside monophosphates. The lowest-energy structure, although corresponding to one of the four helical conformations, differ with the type of the deoxydinucleoside monophosphate. Good or reasonable base stacking is noted in dApdA and dTpdA with both C(3′)-endo and C(2′)-endo sugars and in dApdT and dTpdT with only C(3′)-endo sugar. The inversion of the base sequence in deoxydinucleoside monophosphates alters the order of preference of low-energy conformations as well as the base-stacking property of the unit. The paths linking the starting and final states in the (ω′, ω) plane show interesting features with regard to the energy spread, thus providing insight into the path of conformational movement ofthe molecule under slight perturbation. The stabilities of the A and B forms, including the internal energies of the C(3′)-endo ans C(2′)-endo sugar systems, indicate that for dTpdT the B → A transition is less probable. For dApdA, dApdT, and dTpdA this transition is probable in the same order of preference. We propose that the T-A sequence in the polynucleotide chain might serve as the site accessible for B ? A transitions. The theoretical predictions are in good agreement with the experimental observations.  相似文献   

19.
Circular dichroism measurements on methionyl-containing diketopiperazines have shown that the thioether side chain favours the appearance of fold conformations in the ring. A solvent-dependent conformational distribution has been also found in the case of l-methionylglycine diketopiperazzine.  相似文献   

20.
T Yamazaki  K Nunami  M Goodman 《Biopolymers》1991,31(13):1513-1528
The conformations of cis and trans cyclic retro-inverso dipeptides--2-[(4-hydroxy)benzyl]-5-benzyl-4,6(1H,2H,3H,5H)-pyrimidinedi one (c[mTyr-gPhe]), and 2-benzyl-5-amino-5-[(4-hydroxy)benzyl]-4,6(1H,2H,3H,5H)-pyrimidinedione (c[mTyr-gPhe]), and 2-benzyl-5-amino-5-[(4-hydroxy)benzyl]-4,6(1H,2H,3H,5H)-pyrimidinedione (c[(alpha-amino)mTyr-gPhe])--and the parent cyclic dipeptides--c[tyrosyl-phenylalanine] (cis-c[L-Tyr-L-Phe]) and c[tyrosyl-D-phenylalanine] (trans-c[L-Tyr-D-Phe])--were studied by using 1H-nmr spectroscopy and semiempirical energy calculations. In the cis compounds of all the cyclic retro-inverso and parent dipeptides, the most stable conformer has both aromatic side chains sharing the space over the backbone ring in a "face-to-face" fashion. All the trans compounds predominantly assume a "sandwich" conformation in which the two aromatic rings are folded back over the backbone ring on opposite sides. However, different conformational preferences were observed for the backbones between the retro-inverso and parent cyclic dipeptides. The parent cyclic dipeptide trans-c[L-Tyr-D-Phe] adopts two types of boat structures with different side-chain orientations in almost equal amounts: one with the Tyr side chain in a pseudoaxial position and the Phe side chain in a pseudoequatorial position, the other with the Tyr side chain in a pseudoequatorial position and the Phe side chain in a pseudoaxial position. On the other hand, the cyclic retro-inverso dipeptides trans-c[mPhe-gTyr] and trans c[mTyr-gPhe] assume only one type of boat structure in which the malonyl side chain is in a pseudoequatorial and the gem-diamino side chain is in a pseudoaxial position. In addition to the preferred conformations, the conformational energies of the C alpha--C beta bonds in the malonyl and gem-diamino residues were estimated from the temperature variation of vicinal 1H--1H coupling constants for the H--C alpha--C beta--H groupings observed for the trans isomers of cyclic retro-inverso dipeptides. The energies were evaluated to be 1.1 and 1.8 kcal mol-1 for the malonyl and gem-diamino residues, respectively. Applying these energies to the parent cyclic dipeptide trans-c[L-Tyr-D-Phe], the observed fractions of three side-chain conformations are reasonably reproduced. The conformational energies as well as conformational properties of the molecules estimated in this investigation may be useful to refine force constants for both parent and retro-inverso peptides with aromatic side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号