首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoglycosides were one of the first classes of broad‐spectrum antibacterial drugs clinically used to effectively combat infections. The rise of resistance to these drugs, mediated by enzymatic modification, has since compromised their utility as a treatment option, prompting intensive research into the molecular function of resistance enzymes. Here, we report the crystal structure of aminoglycoside nucleotidyltransferase ANT(4′)‐IIb in apo and tobramycin‐bound forms at a resolution of 1.6 and 2.15 Å, respectively. ANT(4′)‐IIb was discovered in the opportunistic pathogen Pseudomonas aeruginosa and conferred resistance to amikacin and tobramycin. Analysis of the ANT(4′)‐IIb structures revealed a two‐domain organization featuring a mixed β‐sheet and an α‐helical bundle. ANT(4′)‐IIb monomers form a dimer required for its enzymatic activity, as coordination of the aminoglycoside substrate relies on residues contributed by both monomers. Despite harbouring appreciable primary sequence diversity compared to previously characterized homologues, the ANT(4′)‐IIb structure demonstrates a surprising level of structural conservation highlighting the high plasticity of this general protein fold. Site‐directed mutagenesis of active site residues and kinetic analysis provides support for a catalytic mechanism similar to those of other nucleotidyltransferases. Using the molecular insights provided into this ANT(4′)‐IIb‐represented enzymatic group, we provide a hypothesis for the potential evolutionary origin of these aminoglycoside resistance determinants.  相似文献   

2.
In order to get insights into the binding of dyes and mutagens with denatured and single-stranded nucleic acids and the possible implications in frameshift mutagenesis, a 1:1 complex between the non-self-complementary dinucleoside monophosphate cytidilyl-3′,5′-adenosine (CpA) and proflavine was crystallized. The crystals belong to the tetragonal space group P42212 with cell constants a = b = 19.38(1) A? and c = 27.10(1) A?. The asymmetric unit contains one CpA, one proflavine and nine water molecules by weight. The structure was determined using Patterson and direct methods and refined to an R-value of 11% using 2454 diffractometer intensities.The non-self-complementary dinucleoside monophosphate CpA forms a selfpaired parallel chain dimer with a proflavine molecule intercalated between the protonated cytosine-cytosine (C · C) pair and the neutral adenine-adenine (A · A) pair. The dimer complex exhibits a right-handed helical twist and an irregular girth. The neutral A · A pair is doubly hydrogen-bonded through the N(6) and N(7) sites (C(1′)C(1′) distance: 10.97(2) Å) and the protonated C · C pair is triply hydrogen-bonded with a proton shared between the N(3) sites (C(1′)C(1′) distance: 9.59(2) Å). To accommodate the intercalating dye, the sugars of successive nucleotide residues adopt the two fundamental conformations (5′ end: 3′-endo, 3′ end: 2′-endo), the backbone adopts torsion angle values that fluctuate within their preferred conformational domains: the PO bonds (ω, ω′) adopt the characteristic helical (gauche?-gauche?) conformation, the CO bonds (φ, φ′) are both in the trans domain and the C(4′)C(5′) bonds (ψ) are in the gauche+ region. The bases of both residues are disposed in the preferred anti domain with the glycosyl torsion angles (χ) correlated to the puckering mode of the sugar so that the cytidine residue is C(3′)-endo, low χ (12 dg), and the adenosine residue is C(2′)-endo, high χ (84 °). The intercalated proflavine stacks more extensively with the C · C pair than the A · A pair. Between 42-related CpA proflavine units there is a second proflavine which stacks well with both the A · A and the C · C pairs sandwiching it. Both proflavine molecules are positionally disordered. In each of its two disordered sites, the intercalated proflavine forms hydrogen-bonded interactions with only one sugar-phosphate backbone. A total of 26 water sites has been characterized of which only two are fully occupied. These hydration sites are involved in an intricate network of hydrogen bonds with both the dye and CpA and provide insights on the various modes of interactions between water molecules and between water molecules and nucleic acids.The structure of the proflavine-CpA complex shows that intercalation of planar drugs can occur between non-complementary base-pairs. This result can be relevant for understanding the strong binding of acridine dyes to denatured DNA, single-stranded RNA, and single-stranded polynucleotides. Also, the ability of proflayine to promote self-pairs of adenine and cytosine bases could provide a chemical basis for an alternative mechanism of frameshift mutagenesis.  相似文献   

3.
In order to obtain information about the conformational features of a 2′-O-methylated polyribonucleotide at the nearest neighbor level, a detailed nuclear magnetic resonance study of AmpA was undertaken. AmpA was isolated from alkali hydrolysates of yeast RNA, and proton spectra were recorded at 100 MHz in the Fourier transform mode in D2O solutions, 0.01 M, pH 5.4 and 1.5 at 25°C. 31P spectra were recorded at 40.48 MHz. Complete, accurate sets of nmr parameters derived for each nucleotidyl unit by simulation iteration methods. The nmr data were translated into conformational parameters for all the bonds using procedures developed in earlier studies from these laboratories. It is shown that AmpA exists in aqueous solution with a flexible molecular framework, which shows preferences for certain orientations. The ribose rings exist as a 2E ? 3E equilibrium with the —pA ribose showing a bias for the 3E pucker. The C(4′)—C(5′) bonds of both nucleotidyl units show significant preference (75–80%) to exist in gg conformation. The dominant conformer (80%) about C(5′)—O(5′) of the 5′-nucleotidyl unit is gg′. Even though an unambiguous determination of the orientation of the 3′-phosphate group cannot be made, tentative evidence shows that it preferentially occupies g+ domains [O(3′)—P trans to C(3′)—C(2′)] in which the H(3′) —C(3′)—O(3′)—P(3′) dihedral angle is about 31°. There is reasonable evidence that the 2′-O-methyl preferentially occupies the domain in which the O(2′)—CH3 bond is trans to C(2′)—C(1′). Lowering of pH to 1.5, which results in protonation of both the adenine moieties, causes destacking of AmpA. Such destacking is accompanied by small, but real, perturbations in the conformations about most of the bonds in the backbone. A detailed comparison of the solution conformations of ApA and AmpA clearly shows that 2′-O-methylation strongly influences the conformational preference about the C(3′)—O(3′) bond of the 3′-nucleotidyl unit, in addition to inducing small changes in the overall ribophosphate backbone conformational equilibria. The effect of 2′-O-methylation is such that the C(3′)—O(3′) is forced to occupy preferentially the g+ domain rather than the normally preferred g? domain [O(3′)—P trans to C(3′)—C(4′)] in ApA. The data on ApA and AmpA further reveal that the extent of stacking interaction is less in AmpA compared to ApA. It is suggested that stacked species of AmpA exist as right-handed stacks where the magnitude of ω and ω′ about O(5′)—P and P—O(3′) is about 290°. The reason for the lesser degree of stacking in AmpA compared to ApA is intramolecular interaction between 2′-O-methyl and the flexible O(3′)—P—O(5′) bridge, the interaction causing some perturbation in the magnitudes of ω/ω′, causing destacking. The destacking will lead to an increase in χCN by a few degrees, causing an increase in 2E populations; the latter in turn will shift the 3′ phosphate group from g? to g+ domains. In short, a coupled series of conformational events is envisioned at the onset of destacking, made feasible by the interaction between the 2′-O-methyl group and the swivel O(3′)—P—O(5′) bridge.  相似文献   

4.
The title compounds show a pronounced cation-directed ability to self-assemble in water and to gives columnar structures similar to four-stranded helices; for compound (5′→5′)-d(GpG), this leads to the formation of cholesteric and hexagonal liquid crystalline phases. Both phases are columnar and the cholesteric phase is left-handed. This behaviour is a further confirmation of the tendency of guanine derivatives to self-assemble to give stacked columnar structures whenever not impossible for structural reasons. The CD spectra of the aggregates in isotropic solutions are dominated by a negative exciton couplet centred around 250 nm associated to a left-handed columnar chirality. The shapes of the profiles, in the 220–300-nm region, for (5′→5′)-d(GpG) (in water or in saline solutions) and for (3′→3′)-d(GpG) (in KCl solution) are quasi-mirror images of those of poly(G) and (3′→5′)-d(GpG). The appearance of relatively intense CD signals around 280–300 nm in solution of (3′→3′)-d(GpG) in the presence of NaCl resembles that of (3′→5′)-d(GpG) in the presence of Rb+ or Na+. In the compounds investigated in this work, which present two equivalent ends, one observes the two CD features that have been associated, in the current literature, with the signature of four-stranded parallel and antiparallel structures: hence the origin of these CD bands cannot be found in the polarity of the strands. Self-assembly is favoured by the addition of extra salt and the stabilising effect of K+ is greater than that of Na+, in the case of (3′→3′)-d(GpG), an assembled species could be detected by CD only in the presence of extra salt. Chirality 10:734–741, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Inosine-5′-monophosphate dehydrogenase (IMPDH) from the protozoan parasite Tritrichomonas foetus has been expressed in E. coli and crystallized. Crystals were grown to 0.1 mm in each dimension in 18 to 72 h using ammonium sulfate and low-molecular-weight polyethylene glycols. The crystals belong to the cubic space group P432 with unit cell edge = 157.25 Å. The enzyme is a homotetramer with each monomer having a molecular weight of 55,534 Da. There is one monomer per asymmetric unit, based on a volume/mass ratio of 2.7 Å3/Da and self-rotation analysis. The crystals are adequately stable to allow a complete data set to be collected from a single crystal. Complete native data sets have been collected to 2.3 Å resolution at 4°C using synchrotron radiation. High-quality complete data extending to 3.0 Å resolution have been collected from crystals of four putative derivatives, and the data appear to be isomorphous with that of the native crystals in each case. Efforts to solve the derivatives for use in MIR phasing are underway. © 1995 Wiley-Liss, Inc.  相似文献   

6.
K J Miller  J F Pycior 《Biopolymers》1979,18(11):2683-2719
Intercalation-site geometries are generated for a tetramer duplex extracted from B-DNA. Glycosidic angles and puckers of the deoxyribose sugar groups bonded to base pairs BP1 and BP4, namely, those at either end of the tetramer duplex, are assumed to be those of B-DNA to insure continuity. All possible geometrical conformations for combinations of C(2′)-endo, C(3′)-endo, C(2′)-exo, and C(3′)-exo sugar puckers are determined for the tetranucleotide backbone. Those with minimum energy are selected as candidates for intercalation sites. Calculations reveal two pairs of physically meaningful families of intercalation sites which occur in two distinct regions, I and II, of helical angles which orient BP2 relative to BP3 and with the helical axis disjointed between these base pairs. For each site I and II within BP2 and BP3, there are two distinct backbone conformations, A and B, connecting BP3 to BP4 or BP1 to BP2 which do not disrupt backbone conformations connecting BP2 to BP3. Hence two pairs, IA and IB, and IIA and IIB, of intercalation sites exist in which the sugar puckers along the backbone of the tetramer alternate from C(2′)-endo to C(3′)-endo on the backbone (5′p3′) connecting BP2 to BP3. The glycosidic angles of the C(3′)-endo sugar χ3γ are, coincidentally, 80° ± 2° for both conformations γ = A and B connecting BP3 to BP4 along the phosphate backbone (5′p3′). Consistent with the theoretical results, the experimental unwinding angles can be grouped into two categories with absolute values of 18° and 26°. The theoretical unwinding angles for sites IA and IB of 16° and for sites IIA and IIB of 20° occur for a displacement of -0.8 Å in the helical axes of BP2 and BP3 and for a 100% G·C composition, with a decrease depending on the amount of A·T base pairs present. Ratios of theoretical unwinding angles of sites I and II, which range from 0.75 to 0.84 for the two principal sites, compare well with the experimental value of 0.71. The theoretical results, in agreement with experimental observation, provide a new interpretation of the nature and conformation of the possible binding sites. Conformations obtained from these studies of intercalation sites in a tetramer duplex are used to rationalize the well-known neighbor-exclusion principle. The possibility of violation of this principle is demonstrated by the existence of two families of physically meaningful conformations. Conformations of unconstrained dimer duplexes are also obtained, one of which corresponds to the experimental crystal structure of ethidium–dinucleoside complexes, but these cannot be joined to the B-DNA structure. Backbone conformations of the tetramer duplex can be constructed until the base-pair separation reaches 8.25 Å, which may limit the molecules that can intercalate.  相似文献   

7.
Abstract

This paper describes two complexes containing N,N-dimethylproflavine and the dinucleoside monophosphate, 5-iodocytidylyl(3′-5′)guanosine (iodoCpG). The first complex is triclinic, space group PI, with unit cell dimensions a = 11.78 Å, b = 14.55 Å, c = 15.50 Å, a = 89.2°, β = 86.2°, γ = 96.4°. The second complex is monoclinic, space group P21, with a = 14.20 Å, b = 19.00 Å, c = 20.73 Å, β = 103.6°. Both structures have been solved to atomic resolution and refined by Fourier and least squares methods. The first structure has been refined anisotropically to a residual of 0.09 on 5,025 observed reflections using block diagonal least squares, while the second structure has been refined isotropically to a residual of 0.13 on 2,888 reflections with full matrix least squares. The asymmetric unit in both structures contains two dimethylproflavine molecules and two iodoCpG molecules; the first structure has 16 water molecules (a total of 134 non-hydrogen atoms), while the second structure has 18 water molecules (a total of 136 non-hydrogen atoms). Both structures demonstrate intercalation of dimethylproflavine between base-paired iodoCpG dimers. In addition, dimethylproflavine molecules stack on either side of the intercalated duplex, being related by a unit cell translation along b and a axes, respectively.

The basic structural feature of the sugar-phosphate chains accompanying dimethylproflavine intercalation in both structures is the mixed sugar puckering pattern: C3′ endo (3′-5′) C2′ endo. This same structural information is again demonstrated in the accompanying paper, which describes a complex containing dimethylproflavine with deoxyribo-CpG.

Similar information has already appeared for other “simple” intercalators such as ethidium, acridine orange, ellipticine, 9-aminoacridine, N-methyl-tetramethylphenanthrolinium and terpyridine platinum. “Complex” intercalators, however, such as proflavine and daunomycin, have given different structural information in model studies. We discuss the possible reasons for these differences in this paper and in the accompanying paper.  相似文献   

8.
Human α‐amino‐β‐carboxymuconate‐ε‐semialdehyde decarboxylase determines the fate of tryptophan metabolites in the kynurenine pathway by controlling the quinolinate levels for de novo nicotinamide adenine dinucleotide biosynthesis. The unstable nature of its substrate has made gaining insight into its reaction mechanism difficult. Our electron paramagnetic resonance (EPR) spectroscopic study on the Cu‐substituted human enzyme suggests that the native substrate does not directly ligate to the metal ion. Substrate binding did not result in a change of either the hyperfine structure or the super‐hyperfine structure of the EPR spectrum. We also determined the crystal structure of the human enzyme in its native catalytically active state (at 1.99 Å resolution), a substrate analogue‐bound form (2.50 Å resolution), and a selected active site mutant form with one of the putative substrate binding residues altered (2.32 Å resolution). These structures illustrate that each asymmetric unit contains three pairs of dimers. Consistent with the EPR findings, the ligand‐bound complex structure shows that the substrate analogue does not directly coordinate to the metal ion but is bound to the active site by two arginine residues through noncovalent interactions. Proteins 2015; 83:178–187. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Dinshaw J. Patel 《Biopolymers》1977,16(12):2739-2754
The nmr chemical shifts and line widths of the nucleic acid base and sugar proton resonances and the proflavine ring protons can be monitored through the melting transition of the proflavine + poly(dA-dT) complex, phosphate/dye (P/D) ratio = 24 and 8 in 1M salt solution. The nucleic acid and mutagen protons in the complex are in fast exchange between duplex and strand states with the midpoint of the melting transition monitored at the nucleic acid resonances increasing from 72.6°C for poly(dA-dT) to 78.1°C for the P/D = 24 complex and 83.4°C for the P/D = 8 complex in 1M salt solution. The melting transition monitored by the proflavine resonances were 80.0°C for the P/D = 24 complex and 84.3°C for the P/D = 8 complex in 1M salt solution. Since the nucleic acid is in excess at high P/D ratios, the nucleic acid transitions are an average for the opening of mutagen-free and mutagen-bound base-pair regions, while the proflavine transitions monitor the melting of mutagen-bound base-pair regions. The observed 0.75 to 0.95 ppm unfield shift at all four proflavine protons on formation of the complex with poly(dA-dT) provides direct evidence for intercalation of the mutagen between base pairs of the nucleic acid duplex. We have deduced the approximate overlap geometry between the proflavine ring and nearest-neighbor base pairs at the intercalation site from a comparison between experimental proflavine complexation shifts and those calculated for various stacking orientations. The experimental chemical shift of the poly(dA-dT) adenine H-2 resonance in the duplex state in the absence and presence of proflavine suggests that intercalation occurs preferentially at dT-dA sites. The selective chemical shift changes at the sugar H-2′,2″ and H-3′ resonances of the poly(dA-dT) duplex on complex formation demonstrates changes in the sugar pucker and/or torsion angles of the sugar phosphate backbone at the intercalation site.  相似文献   

10.
Conformational energies of the 5′-adenosine monophosphate have been computed as a function of χ and ψ, of the torsion angles about the side-chain glycosyl C(1′)–N(9) and of the main-chain exocyclic C(4′)–C(5′) bonds by considering nonbonded, torsion, and electrostatic interactions. The two primary modes of sugar puckering, namely, C(2′)-endo and C(3′)-endo have been considered. The results indicate that there is a striking correlation between the conformations about the side-chain glyocsyl bond and the backbone C(4′)–C(5′) bond of the nucleotide unit. It is found that the anti and the GaucheGauche (gg), conformations about the glycosyl and the C(4′)–C(5′) bonds, respectively, are energetically the most favored conformations for 5′-adenine nucleotide irrespective of whether the puckering of the ribose is C(2′)-endo or C(3′)-endo. Calculations have also shown that the other common 5′-pyrimidine nucleotides will show similar preferences for the glycosyl and C(4′)–C(5′) bond conformations. These results are in remarkable agreement with the concept of the “rigid” nucleotide unit that has been developed from available data on mononucleotides and dinucleoside monophosphates. It is found that the conformational ‘rigidity’ in 5′-nucleotides compared with that of nucleosides is a consequence of, predominantly, the coulombic interactions between the negatively charged phosphate group and the base. The above result permits one to consider polynucleotide conformations in terms of a “rigid” C(2′)-endo or C(3′)-endo nucleotide unit with the major conformational changes being brought about by rotations about the P–O bonds linking the internucleotide phosphorus atom. IT is predicted that the anti and the gg conformations about the glycosyl and the C(4′)–C(5′) bonds would be strongly preferred in the mononucleotide components of different purine and pyrimidine coenzymes and also in the nucleotide phosphates like adenodine di- and triphosphates.  相似文献   

11.
Polarized Raman scattering measurements have been made of a single crystal of uridylyl(3′–5′)adenosine (UpA) by the use of a Raman microscope with 488.0 nm excitation. The UpA crystal belongs to space group P21 (monoclinic), and Raman intensities Iaa, Ibb, and Ic′c′, have been determined for each Raman band. These intensities correspond to the aa, bb, and c′c′ components of the crystal Raman tensor, where c′ is defined as an axis perpendicular to the crystallographic a axis in the ac plane. From these experimental data, and by taking the known crystal structure into account, anisotropic and isotropic molecular Raman tensors have been calculated for the following 11 normal modes: ring stretching modes of the adenine residue (protonated) at 1560, 1516, 1330, and 715 cm−1; ring stretching modes of the uracil residue at 1696, 1657, 1615, 1228, and 790 cm−1; PO2 symmetric stretching mode at 1080 cm−1; P(—)O single bond stretching mode at 801 cm−1. These pieces of information of the Raman tensors are considered to be useful for estimating the orientations of the DNA and RNA strands in a biological complex from a polarized Raman spectroscopic measurement of such a complex. © 1998 John Wiley & Sons, Inc. Biopoly 45: 135–147, 1998  相似文献   

12.
K J Miller 《Biopolymers》1979,18(4):959-980
An algorithm is developed that enables the routine determination of backbone conformations of nucleic acids. All atomic positions including hydrogen are specified in accord with experimental bond lengths and angles but with theoretically determined conformational angles. For two Watson-Crick base pairs at a separation of 3.38 Å, and perpendicular to a common helical axis, minimum energy configurations are found for all 10 combinations at helical angles of α ~ 36°–38°, corresponding to the B-DNA structure with C(2′)-endo sugar puckers. Backbone configurations exist only within the range 35.5° ? α ? 42°, which suggests the origin of the 10-fold helix. Calculated stacking energies for the B-DNA structure increases for each of the clustered groups of base pairs: G·C with G·C, G·C with A·T, and A·T with A·T, and they are in approximate agreement with experimental observations. The counter-clockwise helix is examined, and physically meaningful structures are found only when the helical axes of successive base pairs are disjointed.  相似文献   

13.
3,4‐Dihydroxy‐2‐butanone‐4‐phosphate synthase (DHBPS) encoded by ribB gene is one of the first enzymes in riboflavin biosynthesis pathway and catalyzes the conversion of ribulose‐5‐phosphate (Ru5P) to 3,4‐dihydroxy‐2‐butanone‐4‐phosphate and formate. DHBPS is an attractive target for developing anti‐bacterial drugs as this enzyme is essential for pathogens, but absent in humans. The recombinant DHBPS enzyme of Salmonella requires magnesium ion for its activity and catalyzes the formation of 3,4‐dihydroxy‐2‐butanone‐4‐phosphate from Ru5P at a rate of 199 nmol min?1 mg?1 with Km value of 116 μM at 37°C. Further, we have determined the crystal structures of Salmonella DHBPS in complex with sulfate, Ru5P and sulfate‐zinc ion at a resolution of 2.80, 2.52, and 1.86 Å, respectively. Analysis of these crystal structures reveals that the acidic loop (residues 34–39) responsible for the acid‐base catalysis is disordered in the absence of substrate or metal ion at the active site. Upon binding either substrate or sulfate and metal ions, the acidic loop becomes stabilized, adopts a closed conformation and interacts with the substrate. Our structure for the first time reveals that binding of substrate Ru5P alone is sufficient for the stabilization of the acidic active site loop into a closed conformation. In addition, the Glu38 residue from the acidic active site loop undergoes a conformational change upon Ru5P binding, which helps in positioning the second metal ion that stabilizes the Ru5P and the reaction intermediates. This is the first structural report of DHBPS in complex with either substrate or metal ion from any eubacteria. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
In order to obtain information about the conformational characteristics at the nearestneighbor level in the 2′-O-methylated region of t-RNA, as well as in the bizarre 5′-terminus of eucaryotic mRNA, a detailed nuclear magnetic resonance study of 2′-O-methyl-cytidylyl-(3′ → 5′)-cytidine (CmpC) was conducted. Proton spectra were recorded at 270 MHz in the Fourier mode in D2O solutions, 0.01M, pD 7.3 in the temperature range 5–80°C. Complete accurate sets of nmr parameters were derived for each of the nucleotidyl units by a combination of homo-nuclear decouplings and simulation iteration methods. The data were translated into conformational parameters using procedures developed in earlier studies from these laboratories. It is shown that the ribofuranose ring exists at a 2E ? 3E equilibrium with clear preference [(75–80)%] for the 3E mode. The C(4′)-C(5′) and C(5′)-O(5′) bonds form a stable conformational network with outspoken preference for conformers in which Ψ1, Ψ2 ? 60° and ?2 ? 180°. The orientation of the 3′-phosphate and 2′-O-methyl groups is such that ?1′ ? 210° and ?″ ? 60°. The phosphodiester bonds are flexible and shift trends for base, H(1′), and H(5″) suggest the existence of a conformational blend of right-handed stack (g?g?), left-handed stack (g+g+), and unstacked arrays (tg? and tg+). Elevation of temperature perturbs the 2E ? 3E equilibrium accompanied with modest depopulation of ψ1, ψ2 ? 60° and ?2 ? 180° conformers. The major effect of elevation of temperature is in the increase of unstacked arrays at the expense of g?g? and g+g+ conformers. The shift trend of Cmp-H(3′) with temperature shows that torsional variation about O(3′)-P is facilitated by increase in temperature and the preferred rotamer about O(3′)-P in the unstacked form is t (ω1′ = 180°). A detailed comparison of the aqueous solution conformations of CpC and CmpC reveals that 2′-O-methylation causes: (i) a reduction in the magnitude of χ1; (ii) an increase in the population of 3E pucker at the 3′-nucleotidyl unit; and (iii) modest perturbations in the O(3′)-P and P-O(5′) bond conformations. Comparison of the aqueous solution conformations of AmpA and CmpC makes clear that the conformational properties of pyrimidine-pyrimidine and purine-purine dimers which carry a 2′-O-methylated 3′-nucleotidyl unit are significantly different.  相似文献   

15.
The crystal and molecular structure of the complex of amylose with dimethyl sulfoxide has been studied by a combination of stereochemical analysis, potential energy, and X-ray diffraction methods. The complex crystallizes in a pseudotetragonal unit cell with a = b = 19.17 Å and c (fiber axis) = 24.39 Å, with two antiparallel chains per unit cell and space group P212121. The amylose chain is a left-handed 61(1.355) helix with three turns per crystallographic repeat. The O(6) rotational position is approximately gt. Dimethyl sulfoxide is located inside the helix with one DMSO molecule for every three glucose residues. An additional four DMSO molecules and eight water molecules each are located in the large interstices between chains, and it is the interaction of these molecules with the helix that results in the pseudotetragonal chain packing. The interstitial DMSO is the source of the previously reported additional layer lines, which are not consistent with the 8.13-Å amylose repeat distance. The final R factor for the layers with amylose contribution to the structure factors was 0.29, while the overall R factor was 0.35. The stereochemical packing analysis provided suitable phasing models for the subsequent X-ray refinement.  相似文献   

16.
The high-resolution crystal structure of the intercalation complex between proflavine and cytidylyl-3',5'-guanosine (CpG) has been studied by thermalmotion analysis. This has provided information on the translational and librational motions of individual groups in the complex. Many of these motions are similar to, though of larger magnitude than in uncomplexed dinucleosides. Pronounced librational effects were observed along the base pairs and in the plane of the drug chromophore.  相似文献   

17.
Abstract

4-thiouracil-2′-trifluorothioacetamide-3′, 5′-diacetyl-β-D-riboside is one of the modified thiouracil analogs synthesized in our institute. The determination of the crystal and molecular structure of this compound was carried out with a view to study the conformation of the molecule in the solid state as well as to investigate the conformations of the trifluoroacetamide and the acetyl substituents of the ribose and their effects on the conformation of the ribose ring. Crystals of 4-thiouracil-2′-trifluorothioacetamide-3′,5′- diacetyl-β-D-riboside are orthorhombic, space group P21 21 21, with cell dimensions a= 15.351 (2), b= 15.535 (1), c= 8.307 (1) Å, V=1981.0 (7) Å3, Z=4, Dm= 1.53, Dc=1.527 g/c.c. and μ=30.1cm -1. The structure was determined using CuKα (λ, =1.5418 Å) at a temperature T of 297K, with 2333 reflections, which were collected on a Enraf-Nonius CAD-4 diffactometer, out of which 2249 (I ≥20) were considered observed. The structure was determined by direct methods using MULTAN and refined by full matrix least squares method to a final reliability factor of 0.054 and a weighted R factor of 0.079. The nucleoside is in the anti conformation [XCN =51.4 (5)°], the ribose has the unusual C (2′) endo -C (1′) exo (2T1), and a g+ conformation [ψ=47.5 (4)] across C(4′)-C(5′) bond. The pseudorotation angle P is 152.8 (4) ° and the amplitude of pucker τm of 42.7 (3)°. The average C-F bond distance is 1.308 Å. There is no base pairing and the typical base-base hydrogen bonded interactions are not present in this structure. On the other hand, a hydrogen bonded dimer is formed involving C(3′) - H(3′)… O (2) and N(3) -H (N3) … O (Al) hydrogen bonds joining the base, ribose ring and the acetyl group. The trend towards longer exocyclic bonds at the acetyl centers in compounds with strongly electronegative aglycones, is also exhibited in this compound, with C(3′)-O(3′) and C(5′)-0(5′) being much longer than C(1′)-O(4′). The acetyl groups also take part in C-H…O hydrogen bonding with the acetyl oxygen atom OA2.  相似文献   

18.
In the X-ray structure of the staphylococcal nuclease–Ca2+ ?3′,5′-pdTp complex, the conformation of the inhibitor 3′,5′-pdTp is distroteed Lys-70* and Lys-71* from an adjacent molecule of staphylococcal nuclease (Loll, P.J., Lattman, E.E. Proteins 5 : 183-201, 1989). In order to correct this crystal packing problem, the solution conformation of enzyme-bound 3′,5′-pdTp in the staphylococcal nuclease–metal–pdTp Complex determined by NMR methods was docked into the X-ray structure of the enzyme [Weber, D. J., Serpersu, E. H., Gittis, A. G., Lattman, E. E., Mildvan, A. S. (preceding paper)]. In the NMR-docked structure, the 5′-phophate of 3′,5′-pdTp overlaps with that in the X-ray Structure. However the 3′-phosphate accepts a hydrogen bond from Lys-49 (2.89Å) rather than from Lys-84 (8.63 Å), and N3 of thymine donates a hydrogen bond to the OH of Tyr-115 (3.16 Å) which does not occur in the X-ray structure (5.28 Å). These interactions have been tested by binding studies of 3′,5′-pdTp, Ca2+, and Mn2+ to the K49A, K84A, and Y115A mutants of staphylococcal nuclease using water proton relaxation rate and EPR methods. Each mutant was fully active and structurally intact, as found by CD and two-dimensional NMR spectroscopy, but bound Ca2+ 9.1- to 9.9-fold more weakly than the wild-type enzyme. While thye K84A mutation did not significantly weaken 3′,5′-pdTp binding to the enzyme (1.5 ± 0.7 fold), the K49A mutation weakened 3′,5′-pdTp binding to the enzyme by the factor of 4.4 ± 1.8-fold. Similarly, the Y115A mutation weakened 3′,5′-pdTp binding to the enzyme 3.6 ± 1.6-fold. Comparable weakening effects of these mutations were found on the binding of Ca2+-3′,5′-pdTp. These results are more readily explained by the NMR-docked structure of staphylococcal nuclease-metal-3′,5′-pdTp than by the X-ray structure. © 1993 Wiley-Liss, Inc.  相似文献   

19.
A conjugative aminoglycoside resistance plasmid pST2 has been isolated from Escherichia coli K-12 14R525, which was mated with a clinical isolate of Salmonella typhimurium S24. A novel resistance gene of aminoglycoside 6′-N-acetyltransferase[AAC(6′)] was cloned from plasmid pST2 on a 1,393 kilobase (kb) of Sphl-SalI fragment into vector pACYC184 and pUC18. This novel A AC (6′) gene in plasmid pST2 acetylated kanamycin, amikacin, dibekacin, tobramycin, gentamicin, netilmicin, and sisomicin. The complete nucleotide sequence of the novel AAC(6′) gene and its neighboring sequences were also determined. Minicell experiments detected only one protein of 24.7 kilodaltons (kDa) translated from an open reading frame of the 618 base pairs (bp) gene.  相似文献   

20.
A new dinuclear copper(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐N′‐ (2‐carbo‐xylatophenyl)oxamide (H3dmapob), and endcapped with 2,2′‐diamino‐4,4′‐bithiazole (dabt), namely [Cu2(dmapob)(dabt)(CH3OH)(pic)]·(DMF)0.75·(CH3OH)0.25 has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single‐crystal X‐ray diffraction. In the crystal structure, both copper(II) ions have square–pyramidal coordination geometries. The Cu···Cu separation through the oxamido bridge is 5.176(9) Å. A two‐dimensional supramolecular framework is formed through hydrogen bonds and π–π stacking interactions. The reactivities toward herring sperm DNA and bovine serum albumin (BSA) show that the complex can interact with the DNA via intercalation mode and bind to the BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines. The influence of different bridging ligands in dinuclear complexes on the DNA‐ and BSA‐binding properties as well as anticancer activities is preliminarily discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号