首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH-dependence of the electrostatic energy of interactions between titratable groups is calculated for some well studied globular proteins: basic pancreatic trypsin inhibitor, sperm whale myoglobin and tuna cytochrome c. The calculations are carried out using a semi-empirical appraach in terms of the macroscopic model based on the Kirkwood-Tanford theory. The results are discussed in the light of their physicochemical and biological properties. It was found that the pH-dependence of the electrostatic energy correlates with the III–IV transition of cytochrome c. The electrostatic field of the cysteine proteinase inhibitor, cystatin, was calculated in two ways. In the first one, the electrostatic field created by the pH dependent charges of the ionizable groups and peptide dipoles was calculated using the approach proposed. In the second one, the finite-difference method was used. The results obtained by the two methods are in overall agreement. The calculated field was discussed in terms of the binding of cystatin to papain.  相似文献   

2.
Empirical energy calculations on cyclo-Gly-X with X- Phe, Tyr, Val, and Leu as a function of the side-chain torsion angles χ indicate that the conformation of minimum energy are characterized by χ1 = 60°, χ2 = 90° for Phe and Try, χ1 = ?60° for Val and χ1 = ?60°, χ2 = 180° and χ1 = 60° and χ2 = 150° for Leu. The minimum energy conformation of cyclo-Gly-Phe and cyclo-Gly-Val have the side chains of Phe and Val stacked over the poperazinedione ring as suggested by NMR and found for cyclo-Gly-Tyr crystal structure. In contrast, the Leu side chain is expected to exist in an extended or a quasi-folded form.  相似文献   

3.
Christian Weidemüller 《BBA》2009,1787(6):721-72
This paper summarizes our present electrostatic calculations on P-type ATPases and their contribution to understand the molecular details of the reaction mechanisms. One focus was set on analyzing the proton countertransport of the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). Protonation of acidic residues was calculated in dependence of pH for different enzyme states in the reaction cycle of the Ca2+-ATPase. We proposed that the acidic Ca2+ ligands Glu 771, Asp 800 and Glu 908 participate in the proton countertransport whereas Glu 309 is more likely to serve as a proton shuttle between binding site I and the cytoplasm. Complementary to infrared measurements, we assigned infrared bands to specific Ca2+ ligands that are hydrogen bonded. Ion pathways were proposed based on the calculations and structural data. Another focus was set on analyzing the energy transduction mechanism of P-type ATPases. In accordance to electrophysiological experiments, we simulated an electric field across the membrane. The impact of the electric field was studied by an accumulated number of residue conformational and ionization changes on specific transmembrane helices. Our calculations on the Ca2+-ATPase and the Na+/K+-ATPase indicated that the highly conserved transmembrane helix M5 is one structural element that is likely to act as energy transduction element in P-type ATPases. Perspectives and limitations of the electrostatic calculations for future computational studies are pointed out.  相似文献   

4.
Empirical molecular electrostatic potentials and a rigid receptor H atom model are used to calculate differences in the interaction energy of cardiotonic steroids with the digitalis receptor. An attempt is made to map the receptor H binding sites for two different steroid conformations with respect to 17 beta side-chain orientation. The calculated interaction energies using single-crystal X-ray structure data indicate linear relationships with the Na+, K+-ATPase inhibitory activity. On the basis of these correlations, the activity of 8 so far pharmacologically not investigated steroids containing C = O in 17 beta substituents are estimated with the help of structural data determined by means of the semiempirical CNDO molecular orbital theory.  相似文献   

5.
A novel strategy for the incorporation of nonnatural amino acids into proteins was developed by using five-base codon-anticodon pairs. The streptavidin mRNA containing five-base codon CGGUA and the chemically aminoacylated tRNA with five-base anticodon UACCG were prepared, and added into E. coli in vitro translation system. As a result, the nonnatural amino acid was successfully incorporated into desired position of the protein. Other five-base codons CGGN1N2, where N1 and N2 indicate one of four nucleotides, were also available for the incorporation of the nonnatural amino acid.  相似文献   

6.
ABCG2 is an ATP binding cassette (ABC) half-transporter that plays a key role in multidrug resistance to chemotherapy. ABCG2 is believed to be a functional homodimer that has been proposed to be linked by disulfide bridges. We have investigated the structural and functional role of the only three cysteines predicted to be on the extracellular face of ABCG2. Upon mutation of Cys-592 or Cys-608 to alanine (C592A and C608A), ABCG2 migrated as a dimer in SDS-PAGE under non-reducing conditions; however, mutation of Cys-603 to Ala (C603A) caused the transporter to migrate as a single monomeric band. Despite this change, C603A displayed efficient membrane targeting and preserved transport function. Because the transporter migrated as a dimer in SDS-PAGE, when only Cys-603 was present (C592A-C608A), the data suggest that Cys-603 forms a symmetrical intermolecular disulfide bridge in the ABCG2 homodimer that is not essential for protein expression and function. In contrast to C603A, both C592A and C608A displayed impaired membrane targeting and function. Moreover, when only Cys-592 or Cys-608 were present (C592A/C603A and C603A/C608A), the transporter displayed impaired plasma membrane expression and function. The combined mutation (C592A/C608A) partially restored plasma membrane expression; however, although transport of mitoxantrone was almost normal, we observed impairment of BODIPY-prazosin transport. This supports the conclusion that Cys-592 and Cys-608 form an intramolecular disulfide bridge in ABCG2 that is critical for substrate specificity. Finally, mutation of all three cysteines simultaneously resulted in low expression and no measurable function. Altogether, our data are consistent with a scenario in which an inter- and an intramolecular disulfide bridge together are of fundamental importance for the structural and functional integrity of ABCG2.  相似文献   

7.
Results of attempts to determine the code of interaction of amino acids in peptide chains proceeding from their coding nucleotide sequences have been summarized. According to the model suggested the G/C and A/U complementarity of codon roots determines the mutual binding of coded amino acid residues. Structures of analogs of the immunoactive peptide, a fragment of IgG1 (336-370) EPQVY have been constructed on the basis of the model.  相似文献   

8.
Hoerr V  Purea A  Faber C 《Biophysical journal》2010,99(7):2336-2343
NMR spectroscopy is a powerful tool for detection and characterization of chemical compounds in biological systems. Its application in pharmaceutical studies in cell cultures, however, has been hampered by the enormous technical challenges in separating intra- from extracellular amounts of one substance. We introduce a novel approach to separate intra- from extracellular NMR signal based on the detection of intermolecular zero-quantum coherences in presence of a chemical shift agent. In a sample of large cells in culture, the investigation of cellular uptake of pharmacological substances becomes feasible. The addition of 10 mM Tm-DOTP to a suspension of 100 Xenopus laevis oocytes resulted in sufficient separation of resonance frequencies between intra- and extracellular water. Upon selective excitation of either intra- or extracellular water signal, only intra- or extracellular components were observed, respectively. The presented localization technique provides intrinsic averaging over a large number of cells, resulting in a significant signal gain. The method works on standard NMR spectrometers, which are available at most scientific research institutions today. On a high-resolution NMR system with a cryoprobe, a 20-fold sensitivity gain was observed as compared to conventionally localized NMR spectroscopy of a single X. laevis oocyte on dedicated NMR microscopes.  相似文献   

9.
Different [7-3H]thymine preparations have been used to determine the inter- and intramolecular isotope effects of the 2-oxoglutarate-dependent thymine hydroxylation, catalyzed by thymine 7-hydroxylase (thymine, 2-oxoglutarate:oxygen oxidoreductase, EC 1.14.11.6). Specific activity ratios of products, viz., 3H2O and 5-hydroxymethyluracil, and remaining substrate to initial substrate have been determined. The influence on these ratios of intra- and intermolecular isotope effects at different degrees of tritium substitution has been analyzed. An intramolecular isotope effect with a kH/kT of about 6.5 has been found. No intermolecular isotope effect of TV/K could be detected when oxygen concentration was varied from 0.4 to 0.01 mM. This agrees with a mechanism in which 2-oxoglutarate is irreversibly changed before the bond-breaking in thymine takes place.  相似文献   

10.
A new NOE strategy is presented that allows the simultaneous observation of intermolecular and intramolecular NOEs between an unlabeled ligand and a 13C,15N-labeled protein. The method uses an adiabatic 13C inversion pulse optimized to an empirically observed relationship between 1 J CH and carbon chemical shift to selectively invert the protein protons (attached to 13C). Two NOESY data sets are recorded where the intermolecular and intramolecular NOESY cross peaks have either equal or opposite signs, respectively. Addition and subtraction yield two NOESY spectra which contain either NOEs within the labeled protein (or unlabeled ligand) or along the binding interface. The method is demonstrated with an application to the B12-binding subunit of Glutamate Mutase from Clostridium tetanomorphum complexed with the B12-nucleotide loop moiety of the natural cofactor adenosylcobalamin (Coenzyme B12).  相似文献   

11.

Background

Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.

Methods

Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.

Results

The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.

Conclusions

These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.

General significance

The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.  相似文献   

12.
For systems involving highly and oppositely charged proteins, electrostatic forces dominate association and contribute to biomolecular complex stability. Using experimental or theoretical alanine-scanning mutagenesis, it is possible to elucidate the contribution of individual ionizable amino acids to protein association. We evaluated our electrostatic free energy calculations by comparing calculated and experimental data for alanine mutants of five protein complexes. We calculated Poisson-Boltzmann electrostatic free energies based on a thermodynamic cycle, which incorporates association in a reference (Coulombic) and solvated (solution) state, as well as solvation effects. We observe that Coulombic and solvation free energy values correlate with experimental data in highly and oppositely charged systems, but not in systems comprised of similarly charged proteins. We also observe that correlation between solution and experimental free energies is dependent on dielectric coefficient selection for the protein interior. Free energy correlations improve as protein dielectric coefficient increases, suggesting that the protein interior experiences moderate dielectric screening, despite being shielded from solvent. We propose that higher dielectric coefficients may be necessary to more accurately predict protein-protein association. Additionally, our data suggest that Coulombic potential calculations alone may be sufficient to predict relative binding of protein mutants.  相似文献   

13.
The identification of possible copper ligands in human ceruloplasmin was carried out by the computer similarity analysis for sequences of ceruloplasmin and several other copper oxidases: azurin, plastocyanin, superoxide dismutase, tyrosinase and hemocyanin. It follows from the analysis of inter- and intramolecular homology that copper active sites of different types appeared to be in close contacts within the ceruloplasmin molecule.  相似文献   

14.
Using 1-6-12 empirical functions with a solvent-averaged electrostatic contribution qIqjε(rIj) × rIj and electrostatic potentials from CNDO-type wavefunctions, the development of specific interactions of ions visualized by the molecular electrostatic potential of PO4-group containing molecules was studied. Going from single molecules to monolayers made up of 37 head groups of phosphatidylcholine (PC) or phosphatidylethanolamine (PE) for quantum-chemical calculations, or of 23 head groups for empirical calculations we found decreasing potential minima. Only the inclusion of the screening effect of water, simulated by a distance dependent dielectric constant, ε(r), gives an explanation of stereospecific interactions of model membranes with ions. This finding can be compared with results of simulation calculations on water structure above a PE head group layer.  相似文献   

15.
Redox active proteins in plant mitochondria were examined using 2-D oxidant/reductant diagonal-SDS-PAGE to separate and identify proteins with intermolecular or intramolecular disulphide bonds using diamide in the first dimension and DTT in the second dimension. Eighteen proteins spots were resolved either above or below the diagonal and these were in-gel digested and identified by MS/MS. This analysis revealed intermolecular disulphide bonds in alternative oxidase, O-acetylserine (thiol) lyase, citrate synthase and between subunits of the ATP synthase. Intramolecular disulphide bonds were observed in a range of mitochondrial dehydrogenases, elongation factor Tu, adenylate kinase and the phosphate translocator. Many of the soluble proteins found were known glutaredoxin/thioredoxin targets in other plants, but the membrane proteins were not found by these methods nor were the nature of the disulphides able to be investigated. The accessibility of thiols involved in disulphide bonds to modification by a lipid derived aldehyde gave an insight into the potential impact of Cys modification on redox-functions in mitochondria during lipid peroxidation. Comparison of the protein sequences of the identified proteins with homologs from other species has identified specific Cys residues that may be responsible for plant-specific redox modulations of mitochondrial proteins.  相似文献   

16.
17.
Taking as the starting point a recently suggested reaction scheme for zymogen activation involving intra- and intermolecular routes and the enzyme-zymogen complex, we carry out a complete analysis of the relative contribution of both routes in the process. This analysis suggests the definition of new dimensionless parameters allowing the elaboration, from the values of the rate constants and initial conditions, of the time course of the contribution of the two routes. The procedure mentioned above related to a concrete reaction scheme is extrapolated to any other model of autocatalytic zymogen activation involving intra- and intermolecular routes. Finally, we discuss the contribution of both of the activating routes in pepsinogen activation into pepsin using the values of the kinetic parameters given in the literature.  相似文献   

18.
In globular proteins, there are intermolecular hydrogen bonds between protein and water molecules, and between water molecules, which are bound with the proteins, in addition to intramolecular hydrogen bonds. To estimate the contribution of these hydrogen bonds to the conformational stability of a protein, the thermodynamic parameters for denaturation and the crystal structures of five Thr to Val and five Thr to Ala mutant human lysozymes were determined. The denaturation Gibbs energy (DeltaG) of Thr to Val and Thr to Ala mutant proteins was changed from 4.0 to -5.6 kJ/mol and from 1.6 to -6.3 kJ/mol, respectively, compared with that of the wild-type protein. The contribution of hydrogen bonds to the stability (DeltaDeltaG(HB)) of the Thr and other mutant human lysozymes previously reported was extracted from the observed stability changes (DeltaDeltaG) with correction for changes in hydrophobicity and side chain conformational entropy between the wild-type and mutant structures. The estimation of the DeltaDeltaG(HB) values of all mutant proteins after removal of hydrogen bonds, including protein-water hydrogen bonds, indicates a favorable contribution of the intra- and intermolecular hydrogen bonds to the protein stability. The net contribution of an intramolecular hydrogen bond (DeltaG(HB[pp])), an intermolecular one between protein and ordered water molecules (DeltaG(HB[pw])), and an intermolecular one between ordered water molecules (DeltaG(HB[ww])) could be estimated to be 8. 5, 5.2, and 5.0 kJ/mol, respectively, for a 3 A long hydrogen bond. This result shows the different contributions to protein stability of intra- and intermolecular hydrogen bonds. The entropic cost due to the introduction of a water molecule (DeltaG(H)()2(O)) could be also estimated to be about 8 kJ/mol.  相似文献   

19.
Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals’ interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone‐carbonyl oxygen atoms located within α‐helices and β‐sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone‐carbonyl oxygen atoms from a set of high‐resolution protein structures and associated molecular‐dynamics simulations in water. We included more‐recently appreciated, but weaker NCIs in our analysis, such as nπ* interactions, Cα‐H bonds and methyl‐H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone‐carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α‐ and β‐structure. In addition, we find examples of under‐ and over‐satisfied carbonyl‐oxygen atoms, and we identify both sequence‐dependent and sequence‐independent secondary‐structural motifs in which these reside. Our analysis provides a more‐detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design.  相似文献   

20.
Magnetic interactions in binuclear copper(II) complexes, [Cu2(apyhist)2Cl2](ClO4)2 (1) and [Cu2(2-pyhist)2Cl2](ClO4)2 (2) with tridentate diimine ligands and chloro-bridged groups (where apyhist=(4-imidazolyl)ethylene-2-amino-1-ethylpyridine and 2-pyhist=(4-imidazolyl)ethylene-2-aminomethylpyridine) were studied with the aim of better elucidating magneto-structural correlations in such species, both in solution and in solid state. X-ray analyses revealed that chloro-bridged ligands keep the copper(II) ion coordinated to adjacent unit, at Cu-Cl distances of 2.271 and 2.737 Å, and a Cu-Cl-Cu angle of 87.46° in compound 1. Each CuII atom is also coordinated to three N atoms from the imine ligand, in a distorted tetragonal pyramidal environment. Magnetic measurements carried out in temperatures from 0.8 to 290 K and in magnetic field up to 170 kOe indicated that besides the intramolecular magnetic coupling between the copper centers [J/k=−(1.93±0.05) K] further interactions between adjacent dimers [Jz/k=−(1.3±0.1) K] should be taken into account. Similar results were observed for compound 2, for which [J/k=−(4.27±0.05) K] and [Jz/k=−(3.7±0.1) K]. In solution, the interconversion of the dimer 1 and the related monomer species [Cu(apyhist)(H2O)2] (ClO4)2 (3) monitored by EPR spectra, was verified to be very dependent on the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号