首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Abstract. For 312 forest patches on sandy soils in the Netherlands, effects of fragmentation are studied of forest habitat in the past on the present occurrence of forest plant species. Using regression techniques, the numbers of forest edge, interior, zoochorous and anemochorous species, as well as occurrence of 24 individual species were related to patch area and connectivity measures. Connectivity was defined as the amount of forest habitat around patches within three zones up to 1000 m. Plant categories were distinguished by habitat type and dispersal mechanism. The results showed that number of total species and number of species of all habitat and dispersal categories increased with area. The occurrence of ten individually studied species were also positively related to area. Most of them were interior species. The number of zoochorous species increased with increasing connectivity. Also occurrence of ten individually studied species were affected by connectivity. Interior zoochorous species showed the highest percentage of affected species. The relationship of interior, animal-dispersed plants to connectivity can be explained by the limited distances covered by their dispersal agents (forest birds and ants) in a non-forest habitat. Also, some anemochorous plants appeared to be affected by connectivity, especially those with heavy seeds and potentially short distance dispersal. As not all species within a certain dispersal or habitat category react similar to area or isolation, it is suggested that differences in underlying processes of fragmentation such as local extinction and colonization need more focus.  相似文献   

2.
In this study we investigated the relationship between the distributionpatterns of a number of herbaceous plant species and the isolation and age ofhabitat patches. The study was conducted for a network of ditch banks in anagricultural landscape in The Netherlands. Thirteen plant species were selectedrepresenting contrasting dispersal and seed bank characteristics. Isolation ofhabitat patches was determined by the distance to the nearest occupied patchandby the number of occupied patches in circles of increasing radius around thepatches. Age was the number of years since the creation of the ditches. In amultiple logistic regression model the separate effects of age of the habitatand the spatial variables were analyzed. A number of habitat variables wereusedto correct the effect of habitat quality. We concluded that distributionpatterns of plant species were mainly determined by habitat quality and thepresence of seed sources at short distances (< 25 m). Thisconclusion was independent of the dispersal characteristics of the species.Mostspecies had higher occupation frequencies in older than younger ditch banks.Only species with persistent seeds had comparable occupation probabilities inolder and younger habitat patches, indicating the importance of the soil seedbank as a source of colonization after large-scale disturbances. The effect ofage and management on the occupation probabilities of the species was oftendiminished in the regression model, probably due to correlation between somehabitat variables and the age of the patches.  相似文献   

3.
4.
B.J. Graae 《植被学杂志》2000,11(6):881-892
Abstract. Forest species composition was recorded in 82 forests in the Himmerland and Hornsherred regions in Denmark and analysed with respect to isolation (distance to other forests and areas of forest), forest continuity (older or younger than 200 yr), soil pH, tree species composition and seed dispersal groups. Continuity and isolation measures were correlated with forest species richness in Hornsherred. Myrmecochorous, autochorous, anemoballistic and endozoochorous species were markedly fewer in recent than in ancient forests. In Himmerland, patterns were much weaker and few significant correlations were found between forest species richness or different seed dispersal groups and continuity or isolation of the forests. Differences between the two regions may result from less intensive land use, a more humid climate and a smaller species pool with less species with short distance dispersal in Himmerland. Landscape fragmentation therefore appears to limit forest species’recolonization more in Hornsherred than in Himmerland.  相似文献   

5.
R. Lande 《Oecologia》1988,75(4):601-607
Summary Calassical demographic methods applied to life history data on the northern spotted owl yield and estimate of the annual geometric rate of increase for the population of λ=0.96±0.03, which is not significantly different from that for a stable population (λ=1.00). Sensitivity analysis indicates that adult annual survivorship has by far the largest influence on λ, followed by the probability that juveniles survive dispersal, and the adult annual fecundity. Substantial temporal fluctuations in demographic parameters have little effect on the long-run growth rate of the population because of the long adult life expectancy. A model of dispersal and territory occupancy that assumes demographic equilibrium is evaluated using data on the amount of old forest habitat remaining in the Pacific Northwest and the current occupancy of this habitat by northern spotted owls. This model is employed to predict the effect of future habitat loss and fragmentation on the population, implying that extinction will result if the old forest is reduced to less than a proportion 0.21±0.02 of the total area in a large region. The estimated minimum habitat requirement for the population is greater than that allowed in management plants by the USDA Forest Service.  相似文献   

6.
Abstract. Local presence of plant species is determined by population colonizations and extinctions. All traits that influence the capacity of individuals to colonize patches and survive within patches, are therefore important for community diversity. Spatial models can explain the coexistence of species provided that the inferior competitor has a greater spatial mobility and thereby can avoid competition. We searched the literature for empirical evidence for such trade-offs and included all available information on correlations between traits associated with the capacity to colonize and traits promoting the ability to survive. A lower reproductive effort of a species is associated with a longer life span and a higher competitive ability. Morphological adaptations for dispersal are less common in species which better tolerate stress, that are better competitors or possess seed dormancy. Such patterns suggest that species that are good survivors may have a limited ability to colonize new patches and vice versa. A negative correlation between dispersability and longevity has important effects on the regional dynamics of single species as well as on the coexistence of species. From a conservation perspective differences in the colonization capacity among species imply that restoration of plant biodiversity must not only focus on conditions within patches, but also consider the spatial arrangement of patches in order to enable plants to bridge gaps in time and space.  相似文献   

7.
Questions: 1. Do relationships among forest plant traits correspond to dispersability‐persistence trade‐offs or other inter‐trait correlations found in the literature? 2. Do species groups delineated by trait similarity, differ in occurrence in ancient vs. new forests or isolated vs more continuous forest patches? 3. Are these patterns consistent for different forest types? Location: Central Belgium, near Leuven. Methods: We investigate the distributions of a large set of plant traits and combinations among all forest species occurring in patches with varying forest continuity and isolation. Through calculation of Gower's similarity index and subsequent clustering,‘emergent’ species groups are delineated. Then, the relative occurrence of these different groups in forest patches of different age and size, sustaining different forest types (alluvial vs. Quercion), and having different isolation status is compared through multivariate GLM analysis. Results: Correlations among several life history traits point towards trade‐offs of dispersability and fecundity vs. longevity. We distinguished three species groups: 1= mainly shrubs or climbers with fleshy or wind dispersed fruits and high dispersal potential; 2 = dominated by small, mainly vegetatively reproducing herbs; 3 = with spring flowering herbs with large seeds and mainly unassisted dispersal. Relative occurrence of these groups was significantly affected by forest age, area, isolation and forest type. Separate analyses for alluvial and Quercion forests indicated that the relative importance of these factors may differ, depending on forest type and species group. Both forest continuity and isolation are important in restricting the relative occurrence of forest species in alluvial forests, whatever their group membership. In Quercion forests forest patch area was the primary determinant of relative occurrence of species groups. Conclusions: It is very important to preserve the actual forest area including the spatial setting and the dispersal infrastructure within the landscape. Next, forest connectivity may be restored, but it is inherently a long process.  相似文献   

8.
Aim This study tests the hypothesis that linear, woody habitat patches surrounding small, sunken rural roads not only function as an unstable sink but also as a true, sustainable habitat for forest plants. Furthermore, factors affecting the presence of forest plant species in sunken roads are determined. Finally, the implications of these findings for the overall metapopulation dynamics of forest plant species in fragmented agricultural landscapes are assessed. Location The study area, c. 155 km2 in size, is situated in a fragmented agricultural landscape within the loamy region of central Belgium. Methods Forest species presence–absence data were collected for 389 sunken roads. The effect of area, depth, age and isolation on sunken road species richness was assessed using linear regression and analysis of variance (anova ). Analysis of covariance was employed to study the interaction between age and isolation. Differences in plant community dispersal spectra in relation to sunken road age and isolation were analysed by means of linear regression and anova . Results Sunken roads proved to function as an important habitat for forest plants. The sink‐hypothesis was falsified by a clear species accumulation in time: sunken road species richness significantly increased with the age of the elements. Sunken road age mainly affected species richness through effects on both area and depth, affecting habitat quality and diversity. Furthermore, sunken road isolation had a significant impact on species richness as well, with the number of forest species decreasing with increasing isolation of the elements, indicating dispersal limitation in sunken road habitats. Moreover, a significant age × isolation interaction effect was demonstrated. Differences in regression slopes for isolation between age classes revealed that the effect of isolation intensified with increasing age of the elements. Differential colonization in relation to forest species dispersal capacities probably account for this, as confirmed by the analysis of sunken road plant community dispersal spectra, with the fraction of species with low dispersal capacities increasing with increasing age and decreasing isolation of the elements. Main conclusions During sunken road development, area and depth increase and, gradually, suitable habitat conditions for forest plant species arise. Depending on their ecological requirements and dispersal capacities, forest species progressively colonize these habitats as a function of the element's isolation. The functioning of sunken roads as a sustainable habitat for forest species enhances the metapopulation viability of forest plants in agricultural landscapes and has important consequences for forest restoration practices. Moreover, the results of this work call for integrating the presence of forest species in small‐scaled linear habitat patches in forest fragmentation studies.  相似文献   

9.
Regional persistence of species requires a positive balance between colonizations and local extinctions. In this study, we examined the amount of colonizations and extinctions and their likelihood as a function of patch size, isolation, and habitat characteristics of a riparian perennial plant, Erigeron acer subsp. decoloratus. We also studied the importance of patch dynamics to the regional population growth. Over five successive years, we counted the number of plant patches along 43 km of riverside. Most patches were small in area and population size. The annual finite growth rate in the number of patches varied between years, but the geometric mean was close to 1.0, indicating a viable patch network in spite of local extinctions. Extinction rate was highest on steep slopes and for small patches with few individual plants and a small patch area. When the patches were classified into different stage classes, the most common fate was stasis, i.e., the patch remained at the same stage. Patch survival and local, within-patch dynamics were most important during this five-year period. Between-patch dynamics (including colonization for example) accounted for 5–10% of annual transitions. The overall dynamics were relatively similar to those of other plant species subjected to riparian disturbance regimes. In the long run, the survival of the species depends on how well it is able to escape from competition from forest and meadow species and track the availability of suitable habitats. This kind of habitat tracking differs from classical metapopulation dynamics. In the former, local extinctions occur as a consequence of adverse changes in the habitat and recolonizations are rare, whereas metapopulation models assume a highly persistent habitat structure with frequent recolonizations. In this respect, the regional dynamics of perennial plants in disturbed riparian habitats may differ from classical metapopulations.  相似文献   

10.
The interpretation of subfossil records of wild plant species with respect to both environmental conditions and past vegetation is complicated by the following: (1) production and dispersal of plant remains including diaspores, (2) the formation of the soil flora, (3) taphonomic processes and differential preservation that act on subfossil assemblages and (4) methods applied to produce subfossil records. Whereas the similarity between recent plant communities and seed banks is often weak, the relationship between past vegetation and subfossil assemblages is still more complicated. It is therefore unlikely that macrofossil assemblages derived from soil samples can be considered as pure samples representing particular palaeobiocoenoses. The assumption that plant communities, in the past, may have been in some way aberrant with respect to composition and that the ecological ranges of species varied during the Quaternary has to be rejected, if not based on well considered assumptions or evidence from pure samples. Only if a sufficient number of suitable studies is available, which enable evaluation between all kinds of plant communities and their respective seed floras, can progress be made with regard to the reconstruction of past vegetation and environmental conditions. As long as these data are not available, the ecological interpretation of particular subfossil assemblages isolated from soil samples has to be carefully evaluated within their particular context.  相似文献   

11.
Abstract  The establishment and maintenance of suitable habitat on-farm or in the surrounding landscape can enhance the survival of beneficial parasitic Hymenoptera, thus improving the control of pest species. Both endemic and weedy non-crop plant species across a highly modified agricultural landscape supported species-rich and abundant parasitic wasp assemblages with diverse biology and host associations. It was also shown that isolated, recently planted, single-species stands of plants can rapidly accumulate diverse assemblages of parasitoids. Chalcidoidea was the most species-rich and abundant group, egg and larval parasitoids were the most speciose and abundant guilds, and parasitoids of herbivorous insects feeding on and inside plant tissue were the most species-rich and abundant functional groups. The hymenopteran assemblages associated with the majority of plant species were dominated by three parasitoid species: a Trichogrammatidae, a Scelionidae ( Telenomus sp.) and a Eulophidae ( Ceranisus sp.), all genera that contain many important biocontrol agents of pest Lepidoptera, Hemiptera and Thysanoptera. Results show that both native and weedy plant species may potentially provide an important reservoir of mobile parasitic wasps of benefit to crop protection.  相似文献   

12.
13.
Arthropod communities in fragmented agricultural landscapes depend on local processes and the interactions between communities in the habitat islands. We aimed to study metacommunity structure of spiders, a group that is known for high dispersal power, local niche partitioning and for engaging in species interactions. While living in fragmented habitats could lead to nestedness, other ecological traits of spiders might equally lead to patterns dominated either by species interactions or habitat filtering. We asked, which community pattern will prevail in a typical agricultural landscape with isolated patches of semi-natural habitats. Such a situation was studied by sampling spiders in 28 grassland locations in a Hungarian agricultural landscape. We used the elements of metacommunity structure (EMS) framework to distinguish between alternative patterns that reveal community organization. The EMS analysis indicated coherent species ranges, high turnover and boundary clumping, suggesting Clementsian community organization. The greatest variation in species composition was explained by local habitat characteristics, indicating habitat filtering. The influence of dispersal could be detected by the significant effect of landscape composition, which was strongest at 500 m. We conclude that dispersal allows spiders to respond coherently to the environment, creating similar communities in similar habitats. Consistent habitat differences, such as species rich versus species poor vegetation, lead to recognisably different, recurrent communities. These characteristics make spiders a predictable and diverse source of natural enemies in agricultural landscapes. Sensitivity to habitat composition at medium distances warns us that landscape homogenization may alter these metacommunity processes.  相似文献   

14.
Invasive bird-dispersed plants often share the same suite of dispersers as co-occurring native species, resulting in a complex management issue. Integrated management strategies could incorporate manipulation of dispersal or establishment processes. To improve our understanding of these processes, we quantified seed rain, recruit and seed bank density, and species richness for bird-dispersed invasive and native species in three early successional subtropical habitats in eastern Australia: tree regrowth, shrub regrowth and native restoration plantings. We investigated the effects of environmental factors (leaf area index (LAI), distance to edge, herbaceous ground cover and distance to nearest neighbour) on seed rain, seed bank and recruit abundance. Propagule availability was not always a good predictor of recruitment. For instance, although native tree seed rain density was similar, and species richness was higher, in native plantings, compared with tree regrowth, recruit density and species richness were lower. Native plantings also received lower densities of invasive tree seed rain than did tree regrowth habitats, but supported a similar density of invasive tree recruits. Invasive shrub seed rain was recorded in highest densities in shrub regrowth sites, but recruit density was similar between habitats. We discuss the role of microsite characteristics in influencing post-dispersal processes and recruit composition, and suggest ways of manipulating these processes as part of an integrated management strategy for bird-dispersed weeds in natural areas.  相似文献   

15.
Abstract. Species richness in calcareous grassland is discussed against the background of historical dispersal processes associated with traditional land-use management such as grazing, but also the artificial establishment by hayseed. Important vectors in the traditionally man-made landscape were sheep and cattle or other livestock such as goats. Calcareous grasslands were not only connected to each other but also to other habitats such as villages, forests, arable fields and heathlands by these vectors which could cover large distances (e.g. transhumance shepherding), which is not the case in the current man-made landscape. Species richness after restoration management of abandoned and afforested calcareous grasslands was predicted by using characters of dispersability in space and time. These were the persistence of the species in the vegetation and the diaspore bank after abandonment or afforestation and the dispersal capacity through wind and sheep. The results reveal that reintroduction of sheep grazing is necessary to reestablish the original species richness. The first validation of the prediction of the succession on clear-cut sites and a comparison with data of species composition in abandoned quarries and the surroundings made it obvious that a species' own dispersal capacity in space is very low except for some well wind-dispersed species. Therefore, it is recommended to include and to simulate dispersal processes in future management to be able to restore the original species richness.  相似文献   

16.
Question: The prominent role of wind dispersal in alpine habitats has been recognized early but has rarely been quantified. The aim of this study is to compare wind dispersal under alpine and lowland conditions and to analyse whether differences are caused by species traits, e.g. terminal velocity of seeds (Vterm) or weather conditions. Location and Methods: We characterized wind dispersal potential of > 1100 Central European species using measured Vterm To quantify the habitat effect on wind dispersal, we measured meteorological key‐parameters and simulated dispersal distance spectra of nine selected species under typical alpine conditions (foreland of the Scaletta‐glacier, Switzerland) and typical lowland conditions (grassland in Bad Lippspringe, Germany). Results: Lowland species had higher Vterm compared to alpine species. However, this difference is absent when only species of species of open habitats are concerned. The meteorological measurements showed that the alpine habitat was mainly characterized by higher frequency and strength of updrafts. The simulations showed that under alpine conditions long distance dispersal occurred much more frequent. Conclusions: More than 50 % of the alpine species have a fair chance to be dispersed by wind over long distances, while this proportion is less than 25 % for species from open habitats in the lowland. The more prominent role of wind dispersal in alpine habitats is mainly a result of differences in environmental conditions, namely more intense vertical turbulence in the alpine habitat, and does not result from prominent differences in plant traits, namely Vterm, between alpine and lowland species.  相似文献   

17.
The Pampa grassland of Argentina is one of the most highly threatened biomes in the world. A high proportion of the original grassland cover has been transformed into land for agriculture or degraded. In the southern part of the region, fragmented semi‐natural grasslands over exposed rock still persist and connectivity between them is assumed to be crucial for maintaining viable populations. We quantified overall connectivity of grassland patches in a sector of the Southern Pampa region, and investigated the degree to which landscape connectivity explains entomophilous plant species assemblages in a subset of patches. We characterized each of the 301 patches in the landscape by their degree of intra‐patch and inter‐patch connectivity based on graph theory, and considering threshold dispersal distances from 100 to 1000 m. We surveyed entomophilous plant species in 39 grassland patches and classified the species in three categories (annual herbs, perennial herbs and shrubs) considering their different growth form and longevity. The influence of connectivity variables on entomophilous plant species assemblages variation was explored using Canonical Correspondence Analysis. Although grassland patches were poorly connected at all threshold distances, some of them were found to be critical for global connectivity. Connectivity significantly explained total, annual‐biennial and shrub assemblages for all threshold dispersal distances (6–13% of total variation). Variation in annual species assemblages was associated with intra‐patch and inter‐patch connectivity at short distance (100 m), while variation in shrub species assemblages was explained by intra‐patch and inter‐patch connectivity for distances between 100 m and 1000 m. This study evidenced the low connectivity of the study system, allowed the identification of critical areas for conservation, and provided valuable information to develop management strategies in increasingly human‐dominated landscapes.  相似文献   

18.
The aim of this study was to detect a potential temporal shift from sink to source dynamics of pioneer plants during primary succession. The study was done in an initial ecosystem, namely an artificially constructed catchment on Pleistocene sands in eastern Germany. The import and export of seeds (including soil seed bank and seed rain), the development of vegetation cover and the population size of all pioneer species were recorded in 2005-2009. The interplay between the spatial distribution of seed rain and the prevailing wind direction provide evidence that seeds of Conyza canadensis (Asteraceae) first and to a considerable amount left the developing ecosystem. A change from a sink to source dynamics was detected already in the first year of both the existence of the site and occurrence of C. canadensis individuals within the site. Population patterns at the landscape unit scale demonstrated extensive auto-correlations in the coverage of this invasive plant at first. Our results underline the pioneer traits of C. canadensis as a prolific seeder and excellent wind disperser, which enables this species to become rapidly dominant over relatively large areas.  相似文献   

19.
20.
侯笑云  宋博  赵爽  丁圣彦  梁国付  董翠芳 《生态学报》2015,35(23):7659-7668
以黄河下游典型农区封丘县为研究区,在林地景观中进行地表节肢动物的观测。用物种丰富度和香农多样性指数代表物种多样性,选择代表景观背景的5个竞争模型:生境特性(H1,2012)、基质特性(H2,2012)、生境变化(H3,1984—2012)、基质变化(H4,1984—2012)和土壤-环境条件(H5,2012)从4个空间尺度上(100,250,350和500 m)进行分析,通过运用基于赤池信息量准则(Akaike information criterion,AIC)的多模型推理(Multi-model Inference,MMI)方法,在R软件里用广义线性模型(Generalized Linear Models,GLM)探究了研究区近30年(1984—2012年)景观背景变化对林地地表节肢动物多样性的影响。研究表明,不同景观背景模型对地表节肢动物多样性的影响具有尺度依赖性。在100 m的尺度下,生境特性(H1)最能够解释香农多样性和物种丰富度,但是随着尺度的增加,生境特性变化(H3)在较大(250、350 m和500 m)的尺度对物种丰富度和香农多样性影响最大,而基质特性和土壤-环境条件(H2和H5)的作用不显著。景观背景对地表节肢动物多样性的解释量达到40%。在研究区域,生境特性是表征香农多样性指数和物种丰富度的指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号