首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
目的:观察在不同温度条件下脊髓星形胶质细胞划痕损伤活化后的形态和活性改变,以探讨亚低温对脊髓损伤后反应性星形胶质细胞增生的影响。方法:体外原代培养新生SD大鼠脊髓星形胶质细胞,以划痕实验制备反应性星形胶质细胞。亚低温选择33℃,细胞培养48 h。实验分为对照组、划痕组、亚低温组和划痕+亚低温组。各组在相应的时间点观察细胞形态,采用免疫荧光染色方法检测Nestin阳性率,MTT比色法观察细胞活性,PI染色方法观察细胞凋亡程度。结果:与对照组和亚低温组相比,划痕组和划痕+亚低温组细胞胞体肥大,周围突起增多、延展以及胞浆丰富,细胞生长率明显升高。与划痕组相比,划痕+亚低温组细胞变化减慢,周围突起减少,细胞长入划痕处所需时间增加,细胞Nestin阳性率、PI阳性率和细胞生长率明显降低,各结果差异显著(P<0.01)。结论:划痕损伤后星形胶质细胞活化为反应性星形胶质细胞并会增生,亚低温明显抑制脊髓反应性星形胶质细胞的活化增生,并可以抑制星形胶质细胞的凋亡。  相似文献   

2.
目的:观察海人藻酸(Kainic acid,KA)海马内注射后星形胶质细胞的变化及雷公藤甲素(TRP)对其的影响。方法:90只SD大鼠(200~220g)随机分为3组:右侧海马注射生理盐水后生理盐水灌胃作为对照组(NS NS),右侧海马注射海人藻酸后生理盐水灌胃干预组(KA NS),右侧海马注射海人藻酸后雷公藤甲素灌胃干预组(KA TRP)。动物存活1天,3天,5天,7天,14天后免疫组织化学结合图像分析技术观察海马内星形胶质细胞形态和数目的变化。结果:(KA NS)组海马内星形胶质细胞数目明显增多,胞体明显增大,突起变短,变粗,与(NS NS)组相比差别具有显著性(p<0.05);(KA TRP)组星形胶质细胞数量明显减少,胞体变小,突起变细长,与(KA NS)组相比差别具有显著性(P<0.05)。结论:KA注射后可导致大鼠海马内星形胶质细胞的激活,雷公藤甲素对KA诱导的星形胶质细胞的活化有抑制作用。  相似文献   

3.
本研究从大鼠大脑皮质分离、纯化星形胶质细胞,再经培养后收集星形胶质细胞的无血清条件培养液。用盖玻片培养法与快速自动比色微量分析法研究了星形胶质细胞条件培养液对小脑皮质神经元生存以及神经元活力的影响。发现星形胶质细胞条件培养液能够明显提高小脑皮质神经元的体外存活率,增强神经元的活力。表明星形胶质细胞具有神经营养性作用。  相似文献   

4.
目的:观察海人藻酸(Kainic acid,KA)海马内注射后星形胶质细胞的变化及雷公藤甲素(TRP)对其的影响.方法:90只SD大鼠(200~220g)随机分为3组:右侧海马注射生理盐水后生理盐水灌胃作为对照组(NS+NS),右侧海马注射海人藻酸后生理盐水灌胃干预组(KA+NS),右侧海马注射海人藻酸后雷公藤甲素灌胃干预组(KA+TRP).动物存活1天,3天,5天,7天,14天后免疫组织化学结合图像分析技术观察海马内星形胶质细胞形态和数目的变化.结果:(KA+NS)组海马内星形胶质细胞数目明显增多,胞体明显增大,突起变短,变粗,与(NS+NS)组相比差别具有显著性(p<0.05);(KA+TRP)组星形胶质细胞数量明显减少,胞体变小,突起变细长,与(KA+NS)组相比差别具有显著性(P<0,05).结论:KA注射后可导致大鼠海马内星形胶质细胞的激活,雷公藤甲素对KA诱导的星形胶质细胞的活化有抑制作用.  相似文献   

5.
目的:研究大鼠星形胶质细胞液压冲击损伤后形态学及蛋白质组学表达变化。方法:建立体外培养星形胶质细胞液压冲击损伤模型。原代培养SD大鼠脑皮质星形胶质细胞,随机分为损伤组与对照组,对照组给予(0.2±0.01)MPa液压冲击损伤,损伤后不同时间点观察细胞形态学变化;双向凝胶电泳技术分析液压冲击损伤后蛋白质组学表达变化。结果:星形胶质细胞在液压冲击损伤后发生了显著的形态学改变,损伤后2h星形胶质细胞出现了细胞水肿、细胞皱缩、细胞连接断开和坏死,损伤后24h、48h细胞胞体肥大、突起增粗明显,部分区域细胞反应性增生明显。液压冲击损伤后,星形胶质细胞蛋白质表达谱发生了显著改变,损伤后有13个蛋白点表达发生显著改变,其中5种蛋白得到质谱鉴定,分别是肌动蛋白结合蛋白、破解蛋白、磷酸甘油酸变位酶1、NADH脱氢酶10亚基和膜联蛋白1。结论:液压冲击损伤能够引起星形胶质细胞发生显著的形态学改变和蛋白质谱表达改变,损伤后表达改变的蛋白质可能与星形胶质细胞的损伤后应激反应相关。  相似文献   

6.
从人星形胶质细胞瘤BT-325细胞中克隆胶质细胞源性神经营养因子(GDNF) cDNA序列.以大肠杆菌作为表达系统,GDNF蛋白在大肠杆菌JM103中获得了高效表达;表达产物经纯化、复性后,以8日龄鸡胚背根节(DRG)、14日龄胎鼠脊髓前角运动神经元以及新生大鼠大脑皮层胶质细胞作为实验材料,研究了GDNF的生物学活性,结果表明: rhGDNF可有效地促进DRG突起的生长,rhGDNF对体外培养的运动神经元表现出明显的促突起生长作用,并可显著提高体外培养运动神经元的存活率,rhGDNF 对体外培养的胶质细胞具有促增殖作用.  相似文献   

7.
睫状神经营养因子对体外培养星形胶质细胞的激活作用   总被引:1,自引:1,他引:0  
目的 观察睫状神经营养因子(CNIF)对体外培养星形胶质细胞的细胞激活作用。方法分别给予不同浓度(0、2、20、200ng/ml)的CNTF孵育有血清培养和无血清培养的星形胶质细胞,采用免疫细胞化学技术及流式细胞术,观察星形胶质细胞形态及细胞周期的变化。结果有血清培养和无血清培养时CNTF均使星形胶质细胞GFAP表达增强,胞核肥大。有血清培养时CNTF还可以促进星形胶质细胞进入细胞周期进行增殖;无血清培养时CNTF无此效应。结论无血清培养时CNTF可以刺激星形胶质细胞进入活化状态,但不刺激其增殖;有血清培养时CNTF可以协助血清中的丝裂原引起星形胶质细胞增殖。  相似文献   

8.
人酸性成纤维细胞生长因子神经营养作用的初步研究   总被引:1,自引:0,他引:1  
本实验研究了人酸性成纤维细胞生长因子(haFGF)的体外神经营养作用。结果表明,haFGF在体外能明显促进鸡胚(E-8)脊髓组织神经突起的生长,并能明显改变新生大鼠脑星形胶质细胞的形态,使扁平、多角形紧密联接的细胞转化为具有纤维样突起的胶质细胞,同时对胶质细胞DNA合成也有一定促进作用。实验还证明,haFGF可增加体外培养新生大鼠海马神经元的存活,且大大增加神经元胞体体积及突起长度。  相似文献   

9.
目的利用成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,探讨内皮素-1(ET1)与反应性星形胶质细胞增殖之间的关系。方法建立成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,用100 n M ET1和5μM BQ788(内皮素受体B的拮抗剂)处理反应性星形胶质细胞48 h,通过免疫荧光的方法对各实验组中星形胶质细胞的标记分子Vimentin及Brdu进行检测,以确定ET1对反应性星形胶质细胞增殖的影响。结果 ET1组中星形胶质细胞的数量明显增加,Brdu阳性细胞占星形胶质细胞的平均百分比(19.41%)高于正常对照组(3.28%,P0.01);而ET1+BQ788组中Brdu阳性细胞数占星形胶质细胞的平均百分比为10.38%,明显低于ET1组(19.41%,P0.01)。结论在成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型中,ET1可刺激反应性星形胶质细胞的增殖,ET1受体endothelin B的拮抗剂BQ788可有效抑制ET1对反应性星形胶质细胞的促增殖效应。  相似文献   

10.
目的观察Nogo—p4是否通过与NgR结合的途径对大鼠脊髓来源神经干细胞分化形成双极形星形胶质细胞突起长度产生抑制。方法取4只出生24h内的Wistar大鼠,悬浮培养法培养大鼠脊髓来源的神经干细胞。把神经干细胞分为A、B、C、D四组,A组加入血清,B组加入血清和Nogo—p4,C组神经干细胞经RNA干扰沉默NgR基因后加入血清分化,D组神经干细胞经RNA干扰沉默NgR基因后加入血清和Nogo—p4。分化第7d,GFAP抗体标记星形胶质细胞,使用Image—ProPlus5.0软件测量双极形星形胶质细胞突起长度。结果神经干细胞分化第7d,四组均可形成双极形星形胶质细胞。B组中双极形星形胶质细胞的突起长度明显短于其它各组。A、C、D组中双极形星形胶质细胞的突起长度没有显著差异。结论Nogo—p4经与NgR结合途径显著抑制脊髓来源神经干细胞分化成的双极形星形胶质细胞的突起生长。  相似文献   

11.
A culture procedure for dorsal root ganglion (DRG) cells is presented using a completely defined culture medium without antibiotics, in combination with mechanical dissociation procedures. This culture procedure allows all dorsal root ganglion cell types to be cocultured for periods of at least 106 days. Some of the dorsal root ganglion neurons, which could be identified by their neurofilaments and the presence of fluoride resistant acid phosphatase, regained their original T-cell appearance within two weeks. After one month in culture ganglion-like reaggregates appeared. Schwann cells, satellite cells and fibroblasts were identified using morphological criteria. All neurons tested maintained excitability during, at least, the first 35 days in culture, since in all cases action potentials could be evoked by current pulses. The method has proved to be useful in the study of morphological, cytochemical and electrophysiological aspects of dorsal root ganglion cell differentiation in vitro.  相似文献   

12.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
M C Raff  E R Abney  J Fok-Seang 《Cell》1985,42(1):61-69
The rat optic nerve contains three types of macroglial cells: type 1 astrocytes first appear at embryonic day 16 (E16), oligodendrocytes at birth (E21), and type 2 astrocytes between postnatal days 7 and 10. The oligodendrocytes and type 2 astrocytes develop from a common, bipotential O-2A progenitor cell. We show here that although O-2A progenitor cells in E17 optic nerve prematurely stop dividing and differentiate into oligodendrocytes within 2 days in culture, when cultured on a monolayer of type 1 astrocytes, they continue to proliferate; moreover, the first cells differentiate into oligodendrocytes after 4 days in vitro, which is equivalent to the time that oligodendrocytes first appear in vivo. Our findings suggest that the timing of oligodendrocyte differentiation depends on an intrinsic clock in the O-2A progenitor cell that counts cell divisions that are driven by a growth factor (or factors) produced by type 1 astrocytes.  相似文献   

14.
An immunohistochemical method utilizing anti-ganglioside GM1 antiserum combined with the peroxidase-antiperoxidase technique was applied to a mixed cell population in primary cultures of newborn rat brain. Ganglioside GM1 was demonstrated to be present in neurons and oligodendroglia, but was absent in astroglia. This demonstration was confirmed using a newly developed biotinylated choleragen-avidin-peroxidase procedure. Primary cultures from newborn rat brain cells that had been subjected to a single treatment with trypsin (first passage) and then cultured for 14 days were predominately (95%) composed of astrocytes that stained positively for glial fibrillary acidic protein but were negative for GM1 ganglioside. This preparation contained only 0.34 nmol ganglioside NeuNAc per mg protein compared to 23.9 nmol gangliosidic NeuNAc/mg protein for a five day culture of newborn rat brain mixed cell culture that had not been subjected to passage. Prolongation of culture time from 5 to 21 days in the latter preparation reduced the ganglioside NeuNAc content to 4.9 nmol gangliosidic NeuNAc/mg protein as the proportion of astrocytes in the culture increased. Ganglioside GM1 could not be detected by TLC analysis of the lipid extract obtained from the “pure” astrocyte culture, although small amounts of GM3 and some polysialogangliosides were detected. About half of the label incorporated upon 24 h incubation of astrocytes in the presence of N-[3H]acetylmannosammine appeared in ganglioside GM3. It is concluded that astrocytes in mixed cell primary cultures from newborn rat brain, as well as astrocytes in astroglial preparations derived from such cultures, do not contain ganglioside GM1.  相似文献   

15.
Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2+ and A2B5+ cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.  相似文献   

16.
Although cells of monocytic lineage are the primary source of human immunodeficiency virus type 1 (HIV-1) in the brain, other cell types in the central nervous system, including astrocytes, can harbor a latent or persistent HIV-1 infection. In the present study, we examined whether immature, multipotential human brain-derived progenitor cells (nestin positive) are also permissive for infection. When exposed to IIIB and NL4-3 strains of HIV-1, progenitor cells and progenitor-derived astrocytes became infected, with peak p24 levels of 100 to 500 pg/ml at 3 to 6 days postinfection. After 10 days, virus production was undetectable but could be stimulated by the addition of tumor necrosis factor alpha (TNF-alpha). To bypass limitations to receptor entry, we compared the fate of infection in these cell populations by transfection with the infectious HIV-1 clone, pNL4-3. Again, transfected progenitors and astrocytes produced virus for 7 days but diminished to low levels beyond 8 days posttransfection. During the nonproductive phase, TNF-alpha stimulated virus production from progenitors as late as 5 weeks posttransfection. Astrocytes produced 5- to 20-fold more infectious virus (27 ng of p24/10(6) cells) than progenitors at the peak of 3 days posttransfection. Differentiation of infected progenitors toward an astrocyte phenotype increased virus production to levels consistent with infected astrocytes, suggesting a phenotypic difference in viral replication. Using this cell culture system of multipotential human brain-derived progenitor cells, we provide evidence that progenitor cells may be a reservoir for HIV-1 in the brains of AIDS patients.  相似文献   

17.
Erythropoietin (EPO), a hematopoietic factor, is also required for normal brain development, and its receptor is localized in brain. Our previous study showed that EPO promotes differentiation of neuronal stem cells into astrocytes. Since astrocytes have influence on the neuronal function, we investigated whether EPO-activated astrocytes could stimulate differentiation of neuronal stem cells into neurons. EPO did not promote neuronal differentiation of neuronal stem cells isolated from 17 day embryos, however, neuronal differentiation was promoted when the neuronal stem cells were co-cultured with astrocyte isolated from post neonatal (Day 1) rat brain. Moreover, neuronal differentiation was further promoted when the neuronal stem cells were cultured with astrocyte culture medium treated by EPO (10U/ml) showing increase of morphological differentiation, and expression of neuronal differentiation marker proteins, neurofilament, and tyrosine hydroxylase. The promoting effect of EPO-treated astrocyte medium was also found in the differentiation of PC12 cells. EPO-promoted morphological differentiation of neuronal stem cells as well as astrocytes was dose dependently reduced by treatment with anti-EPO receptor antibodies in culture with astrocyte culture medium. To clarify whether EPO itself or via production of well-known neurotropic factor could promote neuronal cell differentiation, we determined the level of neurotropic factors in the EPO-treated astrocytes. Compared to untreated astrocytes, EPO-treated astrocytes increased about 2-fold in beta-NGF and 3-4-fold in BMP2, but did not increase BNDF and NT-3 levels. Since the previous study showed that extracellular signal-regulated kinase (ERK) is involved in activation of astrocytes by EPO, we determined whether generation of neurotrophic factor may also be involved with the ERK pathway. In the presence of ERK inhibitor, PD98059, the generation of beta-NGF was diminished in a dose dependent manner consistent with the inhibiting effect on neuronal differentiation. These data demonstrate that EPO promotes neuronal cell differentiation through increased release of beta-NGF and BMP2 from astrocytes, and this effect may be associated with ERK pathway signals.  相似文献   

18.
19.
Several recent studies have proposed that astrocytes may contribute to neurogenesis, not only as a source of trophic substances regulating it, but also as stem cells themselves. In order to better understand these mechanisms, primary astrocyte cultures were established from human fetal brain. After 3-4 weeks in culture, astrocytes (about 95% GFAP+; neurofilament, NF-; neuro-specific enolase, NSE-) were treated with a cocktail of protein kinase activators and FGF-1. After 5 h of treatment, most cells showed morphological changes that increased progressively up to 24-48 h, exhibiting a round cell body with long processes. Immunocytochemistry showed that treatment-induced NF and NSE expression in about 40% of cells. Nestin expression increased after treatment, whereas GFAP immunostaining was not significantly modified. Western blot and RT-PCR confirmed the results. No neuronal electrophysiological properties were observed after treatment, suggesting an incomplete maturation under these experimental conditions. Understanding the regenerative capability and neurogenic potential of astrocytes might be useful in devising therapeutic approaches for a variety of neurological disorders.  相似文献   

20.
Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号