首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small subunit ribosomal RNA (16S rRNA) gene sequence analysis is used for the identification and classification of prokaryotes. In addition, sequencing of 16S rRNA genes amplified directly from the environment is used to estimate microbial diversity. The presence of mosaicism, intra-genomic heterogeneity and the lack of a universal threshold sequence identity value limit 16S rRNA-based phylogenetic analysis. PCR-amplification bias and cloning bias can also result in an inaccurate representation of the microbial diversity. In this review, recently reported complexities of 16S rRNA gene sequence analyses and the requirement of additional tools for microbial phylogeny and diversity analyses are discussed.  相似文献   

2.
The genetic structure of the family Osteoglossidae from different geographical regions was examined using the nuclear 18S ribosomal RNA (18S rDNA) sequence. The results showed that the partial length of 18S rDNA was 1277 bp, and they were relatively conserved in the species of the family Osteoglossidae. A total of 62 (4.83%) polymorphic sites were observed, and 28 haplotypes were defined, which were characterized by different haplotype diversity (0.00105–0.900) and nucleotide diversity (0.00321–3.000). Analysis of molecular variance (AMOVA) showed genetic divergence of these species (79.76%). Phylogenetic analysis revealed that 18S rDNA was a suitable genetic marker and was able to distinguish phylogenetic relationships among different Osteoglossidae species, and it also supported current taxonomy. In addition, low genetic diversity of several species provides genetic assessment information and should be taken into consideration to implement a conservation management planning for some species, such as Scleropages formosus green arowana.  相似文献   

3.
4.
Shenoy AR  Visweswariah SS 《FEBS letters》2006,580(14):3344-3352
The conversion of adenine and guanine nucleoside triphosphates to cAMP and cGMP is carried out by nucleotide cyclases, which vary in their primary sequence and are therefore grouped into six classes. The class III enzymes encompass all eukaryotic adenylyl and guanylyl cyclase, and several bacterial and archaebacterial cyclases. Mycobacterial nucleotide cyclases show distinct biochemical properties and domain fusions, and we review here biochemical and structural studies on these enzymes from Mycobacterium tuberculosis and related bacteria. We also present an in silico analysis of nucleotide cyclases found in completely sequenced mycobacterial genomes. It is clear that this group of enzymes demonstrates the tinkering in the class III cyclase domain during evolution, involving subtle structural changes that retain the overall catalytic function and fine tune their activities.  相似文献   

5.
Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow. Received: 25 September 2000 / Accepted: 24 April 2001  相似文献   

6.
7.
8.
9.
Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis.  相似文献   

10.
The molecular phylogeny of colpodellids provides a framework for inferences about the earliest stages in apicomplexan evolution and the characteristics of the last common ancestor of apicomplexans and dinoflagellates. We extended this research by presenting phylogenetic analyses of small subunit rRNA gene sequences from Colpodella edax and three unidentified eukaryotes published from molecular phylogenetic surveys of anoxic environments. Phylogenetic analyses consistently showed C. edax and the environmental sequences nested within a colpodellid clade, which formed the sister group to (eu)apicomplexans. We also presented surface details of C. edax using scanning electron microscopy in order to supplement previous ultrastructural investigations of this species using transmission electron microscopy and to provide morphological context for interpreting environmental sequences. The microscopical data confirmed a sparse distribution of micropores, an amphiesma consisting of small polygonal alveoli, flagellar hairs on the anterior flagellum, and a rostrum molded by the underlying (open-sided) conoid. Three flagella were present in some individuals, a peculiar feature also found in the microgametes of some apicomplexans.  相似文献   

11.
Brood patch temperatures (BPT) of 76 species of birds were collated from the literature and compared with female body mass (FBM) and incubation period (Ip) of the species concerned.  相似文献   

12.
Underground environments are increasingly recognized as reservoirs of faunal diversity. Extreme environmental conditions and limited dispersal ability of underground organisms have been acknowledged as important factors promoting divergence between species and conspecific populations. However, in many instances, there is no correlation between genetic divergence and morphological differentiation. Lucifuga Poey is a stygobiotic fish genus that lives in Cuban and Bahamian caves. In Cuba, it offers a unique opportunity to study the influence of habitat fragmentation on the genetic divergence of stygobiotic species and populations. The genus includes four species and one morphological variant that have contrasting geographical distributions. In this study, we first performed a molecular phylogenetic analysis of the Lucifuga Cuban species using mitochondrial and nuclear markers. The mitochondrial phylogeny revealed three deeply divergent clades that were supported by nuclear and morphological characters. Within two of these main clades, we identified five lineages that are candidate cryptic species and a taxonomical synonymy between Lucifuga subterranea and Lucifuga teresinarum. Secondly, phylogeographic analysis using a fragment of the cytochrome b gene was performed for Lucifuga dentata, the most widely distributed species. We found strong geographical organization of the haplotype clades at different geographic scales that can be explained by episodes of dispersal and population expansion followed by population fragmentation and restricted gene flow. At a larger temporal scale, these processes could also explain the diversification and the distribution of the different species.  相似文献   

13.
The phylogeny of the Tubificidae, and of most of its subfamilies and some of its genera, is revisited, on the basis of sequences of 18S ribosomal DNA in a selection of species. Forty-six new 18S sequences of Naididae (6), Tubificidae (37), Phreodrilidae (1), Lumbriculidae (1), and Enchytraeidae (1) are reported and aligned together with corresponding sequences of 21 previously studied taxa. The 18S gene of Insulodrilus bifidus provides the first molecular evidence that phreodrilids are closely related to tubificids, corroborating previous conclusions based on morphology. The data further support the monophyletic status of Tubificidae, provided that the "Naididae" is regarded a part of this family; "naidids" may not even constitute a monophyletic group. It is thus suggested that the family name Naididae is formally suppressed as a junior synonym of the Tubificidae. The 18S gene also resolves a number of relationships within the tubificids. Among the subfamilies, Tubificinae is supported, Rhyacodrilinae and Phallodrilinae are revealed as nonmonophyletic, and Limnodriloidinae remains unresolved. Most tubificid genera tested for monophyly are corroborated by the data, only one (Tubifex) is refuted, and two (Tubificoides and Limnodriloides) are unresolved from other taxa. It is concluded that it will be valuable to expand the taxonomic sampling for 18S rDNA in clitellates, and in annelids in general, as this is likely to improve the resolution at many levels. However, it will be equally important to combine the annelid 18S data with other gene sequences and nonmolecular characters, to estimate the phylogeny of these common and diverse worms with greater precision.  相似文献   

14.
Kengyilia is a perennial genus distributing in central and western Asia. Here, the levels of nucleotide diversity for COXII intron were obtained. The estimates of nucleotide diversity for different genome constitution ranged from θ = 0.00082 and π = 0.00082 for St genome species to π = 0.01227 and θ = 0.01229 for P genome species. Employing COXII intron sequences, the phylogenetic relationships within Kengyilia and between Kengyilia genus and its closely related genera were examined. The Maximum Parsimony analysis demonstrated that Kengyilia species were positioned into two clades corresponding to different maternal genomic donor. Kengyilia stenachyra, Kengyilia grandiglumis, Kengyilia hirsuta, Kengyilia melanthera, Kengyilia thoroldiana, Kengyilia alatavica and Kengyilia zhaosuensis were related to species of Agropyron, while Kengyilia kokonorica, Kengyilia rigidula, Kengyilia nana, Kengyilia mutica, Kengyilia longiglumis, Kengyilia laxiflora and Kengyilia gobicola were close to species of Roegneria and Pseudoroegneria. In addition, other three species of Kengyilia, such as Kengyilia batalinii, Kengyilia tahelacana and Kengyilia kaschgarica, were related to Douglasdeweya deweyi, Pseudoroegneria strigosa and Roegneria tibetica. This result indicated that there had been two phylogenetically divergent maternal donors within Kengyilia. Our new finding will help to understand the evolutionary history of the genus Kengyilia.  相似文献   

15.
16.
Summary The small subunit ribosomal RNA (16S-like rRNA) coding regions of the hypotrichous ciliatesOnychodromus quadricornutus andOxytricha granulifera were amplified using polymerase chain reaction techniques. Complete sequences were determined for the amplified genes and compared to those of other ciliated protozoa. In phylogenetic trees inferred using distance matrix methods oxytrichids are not seen as a cohesive phylogenetic group.Oxytricha nova is most closely related toStylonychia pustulata in a lineage that also includesO. quadricornutus. This phylogeny contradicts phylogenetic schemes in whichOnychodromus is considered to be a primitive hypotrichous ciliate and suggests thatO. nova was misidentified as members of the genusOxytricha.  相似文献   

17.
18.
Abstract 16S rDNA sequence data was obtained for 11 species of Arthrobacter and 4 species of Micrococcus and compared with that from other members of the arthrobacterial lineage within the order Actinomycetales . The intermixing of members of these two genera and the placement of Renibacterium salmoninarum within the radiation of these two genera, as previously suggested by 16S rRNA cataloguing, is confirmed. The branching pattern reveals several closely related organisms that cluster around the type species of Arthrobacter and Micrococcus ; these species are considered 'core organisms'. A few species, however, branch outside the radiation of core organisms; these include Micrococcus kristinae, Micrococcus halophilus , and, as previously indicated, Micrococcus sedentarius and M. nishinomiyaensis . As phenotypic data that would support the exclusion of these four species from the genus Micrococcus are still lacking taxonomic conclusions should await more thorough comparative studies.  相似文献   

19.
We have analyzed the phylogenetic and genomic relationships in the genus Setaria Beauv. including diploid and tetraploid species, by means of the molecular diversity of the 5S rDNA spacer and chromosomal organization of the 5S and 18S-5.8S-25S rDNA genes. PCR amplification of the 5S rDNA sequences gave specific patterns. All the species studied here share a common band of about 340 bp. An additional band of an approximately 300-bp repeat unit was found for Setaria verticillata and the Chinese accessions of Setaria italica and Setaria viridis. An additional band of 450 bp was found in the sole species Setaria faberii. Fluorescent in situ hybridization was used for physical mapping of the 5S and 18S-5.8S-25S rDNA genes and showed that they are localized at two separate loci with no polymorphism of chromosome location among species. Two chromosome pairs carrying the 5S and 18S-5.8S-25S rDNA clusters can now be unambiguously identified using FISH. Phylogenetic trees based on the variation of the amplified 5S rDNA sequences showed a clear separation into four groups. The clustering was dependent on the genomic composition (genome A versus genome B) and confirmed the closest relationship of S. italica and S. viridis accessions from the same geographical region. Our results confirm previous hypotheses on the domestication centers of S. italica. They also show the wide difference between the A and B genomes, and even clarify the taxonomic position of S. verticillata. Received: 28 August 2000 / Accepted: 27 January 2001  相似文献   

20.
Random amplification of polymorphic DNA polymerase chain reaction (RAPD-PCR) and pathological, morphological and ultrastructural characterization were used to differentiate seven new microsporidian isolates infecting the mulberry silkworm, Bombyx mori. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIK-4m was found to be more virulent than other isolates. However, all the isolates, except NIK-4m, showed heavy gonadal infection and vertical transmission in the infected silkworms. Differences in the spore shape ranging from oval to elongate were observed, and the polar filament has 8-16 coils arranged in one or two rows. Of the 80 decamer random primers tested, 50 generated reproducible RAPD profiles and yielded a total of 600 fragments, of which 594 were polymorphic (99%). Forty nine RAPD primers produced 179 unique genetic markers, whose presence or absence differed among the microsporidians, albeit with varied efficiency of polymorphism detection. The degree of band sharing was used to evaluate genetic distances between different microsporidian isolates and to construct a phylogenetic tree using Dice coefficients. Cluster analysis based on Dice coefficients resulted in the formation of one major cluster consisting of NIK-1s, NIAP-7g, NIK-2r and NIK-5d and NIK-4m in the other; while NIAP-6p was intermediate between these two. NIK-8b and NITN-9n were found to be entirely different from others. Reproducible RAPD patterns of all microsporidian isolates enabled us to differentiate the microsporidian isolates. The results demonstrate that besides ultrastructural studies, RAPD-PCR can be a useful and reliable tool to detect polymorphism, genetic relationships, and for the identification of the microsporidians. In addition, DNA fingerprints generated in this process have potential applications as diagnostic tools for identification of different microsporidia with considerable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号