首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (δ(13) C(TOC) ) and nitrogen (δ(15) N) isotopes as well as by constructing and analyzing 16S rRNA gene libraries. Depending on their position on the littoral gradient, two types of mats were identified, which showed distinct differences regarding the structure, development and composition of the microbial community. Intertidal microbial mats showed a low species diversity with filamentous non-heterocystous Cyanobacteria providing the main mat structure. In contrast, supratidal microbial mats showed a distinct vertical zonation and a high degree of species diversity. Morphotypes of non-heterocystous Cyanobacteria were recognized as the main structural component in these mats. In addition, unicellular Cyanobacteria were frequently observed, whereas filamentous heterocystous Cyanobacteria occurred only in low numbers. Besides the apparent visual dominance of cyanobacterial morphotpyes, 16S rRNA gene libraries indicated that both microbial mat types also included members of the Proteobacteria and the Cytophaga-Flavobacterium-Bacteroides group as well as diatoms. Bulk δ(15) N isotopes of the microbial mats ranged from +6.1‰ in the lower intertidal to -1.2‰ in the supratidal zone, indicating a shift from predominantly nitrate utilization to nitrogen fixation along the littoral gradient. This conclusion was supported by the presence of heterocyst glycolipids, representing lipid biomarkers for nitrogen-fixing heterocystous Cyanobacteria, in supratidal but not in intertidal microbial mats. The availability of combined nitrogen species might thus be a key factor in controlling and regulating the distribution of the diazotrophic microbial community of Schiermonnikoog.  相似文献   

2.
The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.  相似文献   

3.
Microbial mats are prokaryotic communities that provide model systems to analyze microbial diversity and ecophysiological interactions. Sulfate-reducing bacteria (SRB) play a key role in sulfur and nutrient recycling in these ecosystems. In this work, specific primers for 16S rRNA encoding gene, previously described, were used to study the diversity of SRB in microbial mats of the Ebro Delta. We confirm that this method is reliable to identify the diversity of SRB in these ecosystems. However, some mismatches in obtained sequences had been observed in our system and must be taken under consideration. Various genera of SRB in Ebro Delta microbial mats were identified, such as Desulfonema, Desulfatitalea, Desulfosalsimonas, Desulfoccocus, and Desulfovibrio. The diversity observed in our samples is very similar to previously reported in other microbial mats communities.  相似文献   

4.
We have examined the biosynthesis and accumulation of cyanobacterial sunscreening pigment scytonemin within intertidal microbial mat communities using a combination of chemical, molecular, and phylogenetic approaches. Both laminated (layered) and nonlaminated mats contained scytonemin, with morphologically distinct mats having different cyanobacterial community compositions. Within laminated microbial mats, regions with and without scytonemin had different dominant oxygenic phototrophs, with scytonemin-producing areas consisting primarily of Lyngbya aestuarii and scytonemin-deficient areas dominated by a eukaryotic alga. The nonlaminated mat was populated by a diverse group of cyanobacteria and did not contain algae. The amplification and phylogenetic assignment of scytonemin biosynthetic gene scyC from laminated mat samples confirmed that the dominant cyanobacterium in these areas, L. aestuarii, is likely responsible for sunscreen production. This study is the first to utilize an understanding of the molecular basis of scytonemin assembly to explore its synthesis and function within natural microbial communities.  相似文献   

5.
Microbial mats are stratified microbial communities composed by highly inter-related populations and therefore are frequently chosen as model systems to study diversity and ecophysiological strategies. The present study describes an integrated approach to analyze microbial quinones and intact polar lipids (IPLs) in microbial mats within layers as thin as 500 μm by liquid chromatography–tandem mass spectrometry. Quinone profiles revealed important depth-related differences in community composition in two mat systems. The higher abundance of ubiquinones, compared to menaquinones, reflected the clear predominance of microorganisms belonging to aerobic α-, β-, and γ-Proteobacteria in Ebro delta estuarine mats. Hypersaline photosynthetic Camargue mats (France) showed a predominance of menaquinone-9 at the top of the mat, which is consistent with an important contribution of facultative aerobic or anaerobic bacteria in its photic zone. Quinone indices also indicated a higher diversity of non-phototrophs and a more anaerobic character in the hypersaline mats. Besides, the dissimilarity index suggested that the samples were greatly influenced by a depth-related redox state gradient. In the analysis of IPLs, there was a predominance of phosphatidylglycerols and sulfoquinovosyldiacylglycerols, the latter being an abundant biomarker of Cyanobacteria. This combined approach based on quinone and IPL analysis has proven to be a useful method to establish differences in the microbial diversity and redox state of highly structure microbial mat systems at a fine-scale level.  相似文献   

6.
We recently published a new method based on determining cyanobacterial biomass by confocal laser scanning microscopy image analysis (CLSM-IA) (Solé et al., Ultramicrosc 107:669–673, 2007). CLSM-IA allows biomass calculation for microorganisms of a small size, since the limit of the technique’s resolution is that generated by a voxel, the smallest unit of a three-dimensional digital image, equivalent to 1.183 × 10−3 mgC/cm3 of sediment. This method is especially suitable for the quantitative analysis of a large number of CLSM images generated from benthic sediments in which complex populations of cyanobacteria are abundant, such as microbial mats. In order to validate the new CLSM approach, mats with varying structural characteristics were studied. We have grouped them into three types: Microcoleus mats (laminated), sandy mats (nonlaminated and composed of well-sorted quartz sands), and oil-polluted mats. In this work, we applied CLSM-IA in natural [the Ebro delta and Sant Jordi colony (Spain), Salins-de-Giraud and Etang de Berre (France), and Orkney Islands (Scotland)] and artificial [mesocosms (Israel)] microbial mats. A total of 4,103 confocal images were obtained in order to determine total and individual cyanobacteria biomass profiles, at microscale level. The data presented in this paper show the efficacy of the method, as it can be applied to highly diverse mat samples.  相似文献   

7.
Variations in morphology, fatty acids, pigments and cyanobacterial community composition were studied in microbial mats across intertidal flats of the arid Arabian Gulf coast. These mats experience combined extreme conditions of salinity, temperature, UV radiation and desiccation depending on their tidal position. Different mat forms were observed depending on the topology of the coast and location. The mats contained 63 fatty acids in different proportions. The increased amounts of unsaturated fatty acids (12–39%) and the trans/cis ratio (0.6–1.6%) of the cyanobacterial fatty acid n- 18:1ω9 in the higher tidal mats suggested an adaptation of the mat microorganisms to environmental stress. Chlorophyll a concentrations suggested lower cyanobacterial abundance in the higher than in the lower intertidal mats. Scytonemin concentrations were dependent on the increase in solar irradiation, salinity and desiccation. The mats showed richness in cyanobacterial species, with Microcoleus chthonoplastes and Lyngbya aestuarii morphotypes as the dominant cyanobacteria. Denaturing gradient gel electrophoresis patterns suggested shifts in the cyanobacterial community dependent on drainage efficiency and salinity from lower to higher tidal zones. We conclude that the topology of the coast and the variable extreme environmental conditions across the tidal flat determine the distribution of microbial mats as well as the presence or absence of different microorganisms.  相似文献   

8.
9.
Microbial mat ecosystems are characterized by both seasonal and diel fluctuations in several physicochemical variables, so that resident microorganisms must frequently adapt to the changing conditions of their environment. It has been pointed out that, under stress conditions, bacterial cells with higher contents of poly-hydroxyalkanoates (PHA) survive longer than those with lower PHA content. In the present study, PHA-producing strains from Ebro Delta microbial mats were selected using the Nile red dying technique and the relative accumulation of PHA was monitored during further laboratory cultivation. The number of heterotrophic isolates in trypticase soy agar (TSA) was ca. 107 colony-forming units/g microbial mat. Of these, 100 randomly chosen colonies were replicated on mineral salt agar limited in nitrogen, and Nile red was added to the medium to detect PHA. Orange fluorescence, produced upon binding of the dye to polymer granules in the cell, was detected in approximately 10% of the replicated heterotrophic isolates. The kinetics of PHA accumulation in Pseudomonas putida, and P. oleovorans were compared with those of several of the environmental isolates spectrofluorometry. PHA accumulation, measured as relative fluorescence intensity, resulted in a steady-state concentration after 48 h of incubation in all strains assayed. At 72 h, the maximum fluorescence intensity of each strain incubated with glucose and fructose was usually similar. MAT-28 strain accumulated more PHA than the other isolates. The results show that data obtained from environmental isolates can highly improve studies based on modeling-simulation programs, and that microbial mats constitute an excellent source for the isolation of PHA-producing strains with industrial applications.  相似文献   

10.
In this study we determined the composition and biogeochemistry of novel, brightly colored, white and orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. These mats were interspersed with one another, but their underlying sediment biogeochemistries differed considerably. Microscopy revealed that the white mats were granules composed of elemental S filaments, similar to those produced by the sulfide-oxidizing epsilonproteobacterium "Candidatus Arcobacter sulfidicus." Fluorescence in situ hybridization indicated that microorganisms targeted by a "Ca. Arcobacter sulfidicus"-specific oligonucleotide probe constituted up to 24% of the total the cells within these mats. Several 16S rRNA gene sequences from organisms closely related to "Ca. Arcobacter sulfidicus" were identified. In contrast, the orange mat consisted mostly of bright orange flakes composed of empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene sequences obtained from these samples were closely related to sequences of known neutrophilic aerobic Fe(II)-oxidizing bacteria. The sediments below both types of mats showed relatively high sulfate reduction rates (300 nmol x cm(-3) x day(-1)) partially fueled by the anaerobic oxidation of methane (10 to 20 nmol x cm(-3) x day(-1)). Free sulfide produced below the white mat was depleted by sulfide oxidation within the mat itself. Below the orange mat free Fe(II) reached the surface layer and was depleted in part by microbial Fe(II) oxidation. Both mats and the sediments underneath them hosted very diverse microbial communities and contained mineral precipitates, most likely due to differences in fluid flow patterns.  相似文献   

11.
To determine whether there are preferential relationships among individuals from the different parishes of the Ebro River delta region, we analyzed the population relationships, taking into account both the birthplaces of the spouses and their surname frequencies. We used data from the 9,085 marriages recorded in the Ebro delta area between 1939 and 1995. Using each spouse's birthplace, we calculated the distances between the subject populations by means of the squared Euclidean distance. Also, from the surname frequencies in the marriages we obtained certain kinship measurements. In both analyses the results show a clear differentiation between the parish of Amposta and the rest of the parishes. This difference is mainly due to a greater number of marriages in which delta outsiders participated and can be related to the greater surname diversity and lesser endogamy observed in this population. On the other hand, if only endogamous marriages are taken into account, there is clearly a differentiation between the parishes from both banks of the river, with a strong homogeneity among the northside parishes. We compared the distances obtained from the birthplaces, the kinship parameters obtained from the surnames, and two geographic distance matrixes by means of a Mantel test, and the results show a strong and significant correlation between them when all marriages are considered. If, on the other hand, only endogamous marriages are taken into account, the barrier effect of the river on the interparish relationships can be appreciated.  相似文献   

12.
Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithified stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, β-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll zeaxanthin, echinenone, β-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a with in the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids: chlorophyll a ratios (0.84–2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.  相似文献   

13.
There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and functions. Indeed, assemblages dominated by purple sulphur bacteria (Chromatiaceae) were efficient exopolymer producers and their biostabilisation potential was significant. In addition, the massive growth of purple sulphur bacteria resulted in a net CO2 degassing whereas diatom dominated biofilms represented a net CO2 sink.  相似文献   

14.
We investigated the influence of desiccation frequency, indicated by tidal position, on microbial community structure, diversity and richness of microbial mats. We independently characterized cyanobacterial, bacterial and archaeal communities, and their spatial variability for two distinct microbial mat systems: subtidal hypersaline mats and intertidal sand flat mats. Community fingerprints based on 16S rDNA were obtained via denaturing gradient gel electrophoresis using polymerase chain reaction primers specific for each group. Fingerprints for all three groups were consistently similar [> or =85% according to Weighted Pair Group with Arithmetic Mean (WPGMA) analysis] along a 1-km-long transect in subtidal mats. Here, pair-wise comparison analysis yielded minimal variation in diversity and richness for all groups. Fingerprints of three sites along an intertidal transect were heterogenous (> or =32% similarity according to WPGMA analysis) with clear shifts in community structure in all three microbial groups. Here, all groups exhibited statistically significant decreases in richness and diversity with tidal height (as desiccation frequency increases). Regression analysis yielded a strong correlation between diversity or richness estimates and position along the tidal gradient, for both Archaea and Bacteria, with Cyanobacteria exhibiting a weaker correlation. These results suggest that desiccation frequency can shape the structure of microbial mat communities, with Archea being least tolerant and Cyanobacteria most tolerant.  相似文献   

15.
Microcoleus chthonoplastes dominated microbial mats are conspicuous along the shallow littoral zone in Lake Chiprana, a hypersaline lake located in the Ebro river basin in north-eastern Spain. Pigment data show that these mats included diatom species and anoxygenic phototrophs, Chloroflexus-type bacteria and purple bacteria. In situ, these mats showed low rates of dinitrogen fixation (acetylene reduction). Acetylene reduction was stimulated about 30-fold in excised mats after moderate phosphate fertilisation during 2 weeks incubation in a mesocosm. Pigment analyses showed that this treatment had little impact on the phototrophic community structure, except that it induced a decrease of Chloroflexus-type bacteria. The use of metabolic inhibitors indicated that methanogenic archaea and aerobic heterotrophic bacteria were the major dinitrogen fixers in this system. This is in agreement with the fact that the mat-building cyanobacterium M. chthonoplastes lacks the dinitrogenase reductase nifH gene and with the fact that acetylene reduction rates were strongly stimulated by additions of H2/CO2, methanol, fructose and sucrose, but not by lactate, acetate, formate and glucose. No significant differences where found for acetylene reduction rates when comparing light and dark incubations of these microbial mats. However, acetylene reduction rates were enhanced in the light when the near infrared (NIR) light was filtered out, which arrested anoxygenic photosynthesis. We suggest, therefore, that the chemoheterotrophic dinitrogen fixing bacteria were in competition with anoxygenic phototrophic bacteria for organic substrates, while the latter did not contribute to dinitrogen fixation in the mat.  相似文献   

16.
Forty seven strains of cyanobacteria, all isolated from microbial mats of intertidal sediments of the island of Mellum (North Sea), were analyzed for the presence of organic osmotica. The cyanobacteria examined belonged to taxonomically different groups and were classified according to their salt optimum and salt tolerance as either freshwater, brackish or marine. Except betaine, all organic osmotica known to occur in cyanobacteria, were found. The results showed no clear correlation between the chemical nature of the organic solute and the salt optimum or salt tolerance of the cyanobacteria examined, indicating that these solutes are not specific to this marine habitat. All strains belonging to the Nostoc/Anabea-group accumulated sucrose as the sole organic osmoticum. The marine, heterocystous Calothrix sp. accumulated trehalose. All strains of the LPP-group (Lyngbya, Plectonema, Phormidium) accumulated glucosylglycerol as sole or primary organic solute. Some LPP-strains accumulated a disaccharide as a secundary solute, e.g. sucrose or trehalose. Gloeocapsa, Synechocystis and Spirulina accumulated glucosylglycerol. Two marine Oscillatoria accumulated trehalose, whereas a freshwater Oscillatoria with a broad salinity tolerance, accumulated sucrose.Analysis of field samples of the microbial mats demonstrated the presence of glycerol, glucosylglycerol, sucrose and trehalose. The relative abundance of the different compounds was related to the species composition as could be predicted from laboratory observations. These data suggest that these carbohydrates have a function in maintaining osmotic balance in the organisms within the microbial mat.  相似文献   

17.
Successful and accurate analysis and interpretation of metagenomic data is dependent upon the efficient extraction of high-quality, high molecular weight (HMW) community DNA. However, environmental mat samples often pose difficulties to obtaining large concentrations of high-quality, HMW DNA. Hypersaline microbial mats contain high amounts of extracellular polymeric substances (EPS)1 and salts that may inhibit downstream applications of extracted DNA. Direct and harsh methods are often used in DNA extraction from refractory samples. These methods are typically used because the EPS in mats, an adhesive matrix, binds DNA during direct lysis. As a result of harsher extraction methods, DNA becomes fragmented into small sizes. The DNA thus becomes inappropriate for large-insert vector cloning. In order to circumvent these limitations, we report an improved methodology to extract HMW DNA of good quality and quantity from hypersaline microbial mats. We employed an indirect method involving the separation of microbial cells from the background mat matrix through blending and differential centrifugation. A combination of mechanical and chemical procedures was used to extract and purify DNA from the extracted microbial cells. Our protocol yields approximately 2 μg of HMW DNA (35-50 kb) per gram of mat sample, with an A(260/280) ratio of 1.6. Furthermore, amplification of 16S rRNA genes suggests that the protocol is able to minimize or eliminate any inhibitory effects of contaminants. Our results provide an appropriate methodology for the extraction of HMW DNA from microbial mats for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging.  相似文献   

18.
The community structure and physiological characteristics of three microbial mat communities in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) were compared. One of the mats was located at the edge of a stream and was dominated by diatoms (with a thin basal layer of oscillatorian cyanobacteria), whereas the other two mats, located over moist soil and the bottom of a pond, respectively, were dominated by cyanobacteria throughout their vertical profiles. The predominant xanthophyll was fucoxanthin in the stream mat and myxoxanthophyll in the cyanobacteria-dominated mats. The sheath pigment scytonemin was absent in the stream mat but present in the soil and pond mats. The stream mat showed significantly lower delta13C and higher delta15N values than the other two mats. Consistent with the delta15N values, N2 fixation was negligible in the stream mat. The soil mat was the physiologically most active community. It showed rates of photosynthesis three times higher than in the other mats, and had the highest rates of ammonium uptake, nitrate uptake and N2 fixation. These observations underscore the taxonomic and physiological diversity of microbial mat communities in the maritime Antarctic region.  相似文献   

19.
Morphology, physiology, and DNA nucleotide composition of Lyme disease spirochetes, Borrelia, Treponema, and Leptospira were compared. Morphologically, Lyme disease spirochetes resemble Borrelia. They lack cytoplasmic tubules present in Treponema, and have more than one periplasmic flagellum per cell end and lack the tight coiling which are characteristic of Leptospira. Lyme disease spirochetes are also similar to Borrelia in being microaerophilic, catalase-negative bacteria. They utilize carbohydrates such as glucose as their major carbon and energy sources and produce lactic acid. Long-chain fatty acids are not degraded but are incorporated unaltered into cellular lipids. The diamino amino acid present in the peptidoglycan is ornithine. The mole % guanine plus cytosine values for Lyme disease spirochete DNA were 27.3-30.5 percent. These values are similar to the 28.0-30.5 percent for the Borrelia but differed from the values of 35.3-53 percent for Treponema and Leptospira. DNA reannealing studies demonstrated that Lyme disease spirochetes represent a new species of Borrelia, exhibiting a 31-59 percent DNA homology with the three species of North American borreliae. In addition, these studies showed that the three Lyme disease spirochetes comprise a single species with DNA homologies ranging from 76-100 percent. The three North American borreliae also constitute a single species, displaying DNA homologies of 75-95 percent. Lyme disease spirochetes and Borrelia exhibited little or no DNA homology (0-2 percent) with the Treponema or Leptospira. Plasmids were present in the three Lyme disease spirochetes and the three North American borreliae.  相似文献   

20.
In this paper, we report the presence of sedimentary microbial ecosystems in wetlands of the Salar de Atacama. These laminated systems, which bind, trap and precipitate mineral include: microbial mats at Laguna Tebenquiche and Laguna La Brava, gypsum domes at Tebenquiche and carbonate microbialites at La Brava. Microbial diversity and key biogeochemical characteristics of both lakes (La Brava and Tebenquiche) and their various microbial ecosystems (non-lithifying mats, flat and domal microbialites) were determined. The composition and abundance of minerals ranged from trapped and bound halite in organic-rich non-lithifying mats to aragonite-dominated lithified flat microbialites and gypsum in lithified domal structures. Pyrosequencing of the V4 region of the 16s rDNA gene showed that Proteobacteria comprised a major phylum in all of the microbial ecosystems studied, with a marked lower abundance in the non-lithifying mats. A higher proportion of Bacteroidetes was present in Tebenquiche sediments compared to La Brava samples. The concentration of pigments, particularly that of Chlorophyll a, was higher in the Tebenquiche than in La Brava. Pigments typically associated with anoxygenic phototrophic bacteria were present in lower amounts. Organic-rich, non-lithifying microbial mats frequently formed snake-like, bulbous structures due to gas accumulation underneath the mat. We hypothesize that the lithified microbialites might have developed from these snake-like microbial mats following mineral precipitation in the surface layer, producing domes with endoevaporitic communities in Tebenquiche and carbonate platforms in La Brava. Whereas the potential role of microbes in carbonate platforms is well established, the contribution of endoevaporitic microbes to formation of gypsum domes needs further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号