首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure of blood to tissue factor leads to the formation of a high affinity tissue factor/factor VIIa complex which initiates blood coagulation. As a first step toward obtaining structural information of this enzyme system, a complex of active-site inhibited factor VIIa (F.VIIai) and soluble tissue factor (sTF) was prepared for crystallization. Crystals were obtained, but only after long incubation times. Analysis by SDS-PAGE and mass spectrometry indicated the presence of sTF fragments similar to those formed by proteolytic digestion with subtilisin (Konigsberg, W., Nemerson, Y., Fang, C., Lin, T.-C. Thromb. Haemost. 69:1171, 1993). To test the hypothesis that limited proteolysis of sTF facilitated the crystallization of the complex, sTF fragments were generated by subtilisin digestion and purified. Analysis by tandem mass spectrometry showed the presence of nonoverlapping N- and C-terminal sTF fragments encompassing more than 90% of the tissue factor extracellular domain. Enzymatic assays and binding studies demonstrated that an equimolar mixture of N- and C-terminal fragments bound to factor VIIa and fully restored cofactor activity. A complex of F.VIIai and sTF fragments was prepared for crystallization. Crystals were obtained using microseeding techniques. The best crystals had maximum dimensions of 0.12 × 0.12 × 0.6 mm and showed diffraction to a resolution of 3 Å. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Formation of the factor VIIa (FVIIa)‐tissue factor (TF) complex triggers the blood coagulation cascade. Using a structure‐based rationale, we investigated how the length of the linker region between the two epidermal growth factor (EGF)‐like domains in FVIIa influences TF binding and the allosteric activity enhancement, as well as the interplay between the γ‐carboxyglutamic acid (Gla)‐containing and protease domains. Removal of two residues from the native linker was compatible with normal cofactor binding and accompanying stimulation of the enzymatic activity, as was extension by two (Gly‐Ser) residues. In sharp contrast, truncation by three or four residues abolished the TF‐mediated stabilization of the active conformation of FVIIa and abrogated TF‐induced activity enhancement. In addition, FVIIa variants with short linkers associated 80‐fold slower with soluble TF (sTF) as compared with wild‐type FVIIa, resulting in a corresponding increase in the equilibrium dissociation constant. Molecular modeling suggested that the shortest FVIIa variants would have to be forced into a tense and energetically unfavorable conformation in order to be able to interact productively with TF, explaining our experimental observations. We also found a correlation between linker length and the residual intrinsic enzymatic activity of Ca2+‐free FVIIa; stepwise truncation resulting in gradually higher activity with des(83–86)‐FVIIa reaching the level of Gla‐domainless FVIIa. The linker appears to determine the average distance between the negatively charged Gla domain and a structural element in the protease domain, presumably of opposite charge, and proximity has a negative impact on apo‐FVIIa activity.  相似文献   

3.
Coagulation factor VIIa (FVIIa) requires tissue factor (TF) to attain full catalytic competency and to initiate blood coagulation. In this study, the mechanism by which TF allosterically activates FVIIa is investigated by a structural dynamics approach that combines molecular dynamics (MD) simulations and hydrogen/deuterium exchange (HX) mass spectrometry on free and TF-bound FVIIa. The differences in conformational dynamics from MD simulations are shown to be confined to regions of FVIIa observed to undergo structural stabilization as judged by HX experiments, especially implicating activation loop 3 (residues 365-374{216-225}) of the so-called activation domain and the 170-loop (residues 313-322{170A-175}) succeeding the TF-binding helix. The latter finding is corroborated by experiments demonstrating rapid deglycosylation of Asn322 in free FVIIa by PNGase F but almost complete protection in the presence of TF or an active-site inhibitor. Based on MD simulations, a key switch of the TF-induced structural changes is identified as the interacting pair Leu305{163} and Phe374{225} in FVIIa, whose mutual conformations are guided by the presence of TF and observed to be closely linked to the structural stability of activation loop 3. Altogether, our findings strongly support an allosteric activation mechanism initiated by the stabilization of the Leu305{163}/Phe374{225} pair, which, in turn, stabilizes activation loop 3 and the S(1) and S(3) substrate pockets, the activation pocket, and N-terminal insertion.  相似文献   

4.
5.
The 3D structure of human factor VIIa/soluble tissue factor in complex with a peptide mimetic inhibitor, propylsulfonamide-D-Thr-Met-p-aminobenzamidine, is determined by X-ray crystallography. As compared with the interactions between thrombin and thrombin inhibitors, the interactions at S2 and S3 sites characteristic of factor VIIa and factor VIIa inhibitors are revealed. The S2 site has a small pocket, which is filled by the hydrophobic methionine side chain in P2. The small S3 site fits the small size residue, D-threonine in P3. The structural data and SAR data of the peptide mimetic inhibitor show that these interactions in the S2 and S3 sites play an important role for the improvement of selectivity versus thrombin. The results will provide valuable information for the structure-based drug design of specific inhibitors for FVIIa/TF.  相似文献   

6.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. Structure-based designs of the P3 moiety in the peptide mimetic factor VIIa inhibitor successfully lead to novel inhibitors with selectivity for FVIIa/TF and extrinsic coagulation the same as or even higher than those of previously reported peptide mimetic factor VIIa inhibitors. X-ray crystal structure analysis reveals that one of the novel inhibitors shows improved selectivity by forming interactions between the inhibitor and FVIIa as expected. Another of the novel inhibitors achieves improved selectivity through an unexpected hydrogen bond with Gln217, with a unique bent conformation in FVIIa/TF accompanied by conformational changes of the inhibitor and the protein.  相似文献   

7.
The protease domain of coagulation factor VIIa (FVIIa) is homologous to trypsin with a similar active site architecture. The catalytic function of FVIIa is regulated by allosteric modulations induced by binding of divalent metal ions and the cofactor tissue factor (TF). To further elucidate the mechanisms behind these transformations, the effects of Zn2+ binding to FVIIa in the free form and in complex with TF were investigated. Equilibrium dialysis suggested that two Zn2+ bind with high affinity to FVIIa outside the N-terminal gamma-carboxyglutamic acid (Gla) domain. Binding of Zn2+ to FVIIa, which was influenced by the presence of Ca2+, resulted in decreased amidolytic activity and slightly reduced affinity for TF. After binding to TF, FVIIa was less susceptible to zinc inhibition. Alanine substitutions for either of two histidine residues unique for FVIIa, His216, and His257, produced FVIIa variants with decreased sensitivity to Zn2+ inhibition. A search for putative Zn2+ binding sites in the crystal structure of the FVIIa protease domain was performed by Grid calculations. We identified a pair of Zn2+ binding sites in the Glu210-Glu220 Ca2+ binding loop adjacent to the so-called activation domain canonical to serine proteases. Based on our results, we propose a model that describes the conformational changes underlying the Zn2+-mediated allosteric down-regulation of FVIIa's activity.  相似文献   

8.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. A novel peptide mimetic factor VIIa inhibitor, ethylsulfonamide-d-biphenylalanine-Gln-p-aminobenzamidine, shows 100-fold selectivity against thrombin in spite of its large P3 moiety, unlike previously reported FVIIa/TF selective inhibitors. X-ray crystal structure analysis reveals that the large P3 moiety, d-biphenylalanine, and the small P4 moiety, ethylsulfonamide, make novel interactions with the 170-loop and Lys192 of FVIIa/TF, respectively, accompanying ligand-induced conformational changes of the 170-loop, Gln217, and Lys192. Structural comparisons of FVIIa with thrombin and amino acid sequence comparisons among coagulation serine proteases suggest that these interactions play an important role in achieving selective inhibition for FVIIa/TF.  相似文献   

9.
Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF1-263-FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF1-263-FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.  相似文献   

10.
The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic properties. Extensive studies have revealed two putative pathways for this allosteric communication. Here we provide further details of this allosteric communication by investigating FVIIa loop swap variants containing the 170 loop of trypsin that display TF-independent enhanced activity. Using x-ray crystallography, we show that the introduced 170 loop from trypsin directly interacts with the FVIIa active site, stabilizing segment 215–217 and activation loop 3, leading to enhanced activity. Molecular dynamics simulations and novel fluorescence quenching studies support that segment 215–217 conformation is pivotal to the enhanced activity of the FVIIa variants. We speculate that the allosteric regulation of FVIIa activity by TF binding follows a similar path in conjunction with protease domain N terminus insertion, suggesting a more complete molecular basis of TF-mediated allosteric enhancement of FVIIa activity.  相似文献   

11.
Norledge BV  Petrovan RJ  Ruf W  Olson AJ 《Proteins》2003,53(3):640-648
Factor X is activated to factor Xa (fXa) in the extrinsic coagulation pathway by the tissue factor (TF)/factor VIIa (fVIIa) complex. Upon activation, the fXa molecule remains associated with the TF/fVIIa complex, and this ternary complex is known to activate protease-activated receptors (PARs) 1 and 2. Activation of fVII in the TF complex by fXa is also seen at physiologic concentrations. The ternary complexes TF/fVII/fXa, TF/fVIIa/fX, and TF/fVIIa/fXa are therefore all physiologically relevant and of interest as targets for inhibition of both coagulation and cell-signaling pathways that are important in cardiovascular disease and inflammation. We therefore present a model of the TF/fVIIa/fXa complex, built with the use of the available structures of the TF/fVIIa complex and fXa by protein-protein docking calculations with the program Surfdock. The fXa model has an extended conformation, similar to that of fVIIa in the TF/fVIIa complex, with extensive interactions with TF and the protease domain of fVIIa. All four domains of fXa are involved in the interaction. The gamma-carboxyglutamate (Gla) and epithelial growth factor (EGF1 and EGF2) domains of fVIIa are not significantly involved in the interaction. Docking of the Gla domain of fXa to TF/fVIIa has been reported previously. The docking results identify potential interface residues, allowing rational selection of target residues for site-directed mutagenesis. This combination of docking and mutagenesis confirms that residues Glu51 and Asn57 in the EGF1 domain, Asp92 and Asp95 in the EGF2 domain, and Asp 185a, Lys 186, and Lys134 in the protease domain of factor Xa are involved in the interaction with TF/fVIIa. Other fX protease domain residues predicted to be involved in the interaction come from the 160s loop and the N-terminus of the fX protease domain, which is oriented in such a way that activation of both fVII by fXa, and the reciprocal fX activation by fVIIa, is possible.  相似文献   

12.
Factor VIIa initiates the extrinsic coagulation cascade; this event requires a delicately balanced regulation that is implemented on different levels, including a sophisticated multi-step activation mechanism of factor VII. Its central role in hemostasis and thrombosis makes factor VIIa a key target of pharmaceutical research. We succeeded, for the first time, in recombinantly producing N-terminally truncated factor VII (rf7) in an Escherichia coli expression system by employing an oxidative, in vitro, folding protocol, which depends critically on the presence of ethylene glycol. Activated recombinant factor VIIa (rf7a) was crystallised in the presence of the reversible S1-site inhibitor benzamidine. Comparison of this 1.69A crystal structure with that of an inhibitor-free and sulphate-free, but isomorphous crystal form identified structural details of factor VIIa stimulation. The stabilisation of Asp189-Ser190 by benzamidine and the capping of the intermediate helix by a sulphate ion appear to be sufficient to mimic the disorder-order transition conferred by the cofactor tissue factor (TF) and the substrate factor X. Factor VIIa shares with the homologous factor IXa, but not factor Xa, a bell-shaped activity modulation dependent on ethylene glycol. The ethylene glycol-binding site of rf7a was identified in the vicinity of the 60 loop. Ethylene glycol binding induces a significant conformational rearrangement of the 60 loop. This region serves as a recognition site of the physiologic substrate, factor X, which is common to both factor VIIa and factor IXa. These results provide a mechanistic framework of substrate-assisted catalysis of both factor VIIa and factor IXa.  相似文献   

13.
Gale AJ  Griffin JH 《Proteins》2004,54(3):433-441
Activation of the anticoagulant human plasma serine protease zymogen, protein C, by a complex of thrombin and the membrane protein, thrombomodulin, generates activated protein C, a physiologic anti-thrombotic, anti-inflammatory and anti-apoptotic agent. Alanine-scanning site-directed mutagenesis of residues in five surface loops of an extensive basic surface on protein C was used to identify residues that play essential roles in its activation by the thrombin-thrombomodulin complex. Twenty-three residues in the protein C protease domain were mutated to alanine, singly, in pairs or in triple mutation combinations, and mutants were characterized for their effectiveness as substrates of the thrombin-thrombomodulin complex. Three protein C residues, K192, R229, and R230, in two loops, were identified that provided major contributions to interactions with thrombin-thrombomodulin, while six residues, S190, K191, K217, K218, W231, and R312, in four loops, appeared to provide minor contributions. These protein C residues delineated a positively charged area on the molecule's surface that largely overlapped the previously characterized factor Va binding site on activated protein C. Thus, the extensive basic surface of protein C and activated protein C provides distinctly different, though significantly overlapping, binding sites for recognition by thrombin-thrombomodulin and factor Va.  相似文献   

14.
Injury of a blood vessel exposes membrane-bound tissue factor (TF) to blood, which allows binding of coagulation factor VIIa (FVIIa). This initiation of the coagulation cascade is dictated by a specific multi-domain interaction between FVIIa and TF. To examine the energies involved in the transition state of the FVIIa:TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with a smaller cysteine residue. Determination of Phi values in each of the positions using surface plasmon resonance measurements enabled us to characterize the transition state complex between the resulting sTF variants and FVIIa. We found that the interactions in the transition state seemed to be most pronounced between the protease domain of FVIIa and sTF while detailed specific interactions between the Gla-domain and sTF were missing. Thus, the transition state energy data indicate a sequential binding event between these two macromolecules.  相似文献   

15.
Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains. Although FVIIa also has a Gla-rich region, its affinity for PS-containing membranes is much lower compared with that of FIXa and FXa. Research suggests that a more common endothelial cell lipid, phosphatidylethanolamine (PE), might augment the contribution of PS in FVIIa membrane-binding and proteolytic activity. We used soluble forms of PS and PE (1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), 1,2-dicaproyl-sn-glycero-3-phospho-ethanolamine (C6PE)) to test the hypothesis that the two lipids bind to FVIIa jointly to promote FVIIa membrane binding and proteolytic activity. By equilibrium dialysis and tryptophan fluorescence, we found two sites on FVIIa that bound equally to C6PE and C6PS with Kd of ∼ 150–160 μM, however, deletion of Gla domain reduced the binding affinity. Binding of lipids occurred with greater affinity (Kd∼70–80 μM) when monitored by FVIIa proteolytic activity. Global fitting of all datasets indicated independent binding of two molecules of each lipid. The proteolytic activity of FVIIa increased by ∼50–100-fold in the presence of soluble TF (sTF) plus C6PS/C6PE. However, the proteolytic activity of Gla-deleted FVIIa in the presence of sTF was reduced drastically, suggesting the importance of Gla domain to maintain full proteolytic activity.  相似文献   

16.
Signaling of the tissue factor‐FVIIa complex regulates angiogenesis, tumor growth, and inflammation. TF‐FVIIa triggers cell signaling events by cleavage of protease activated receptor (PAR2) at the Arg36‐Ser37 scissile bond. The recognition of PAR2 by the FVIIa protease domain is poorly understood. We perform molecular modeling and dynamics simulations to derive the PAR2‐FVIIa interactions. Docking of the PAR2 Arg36‐Ser37 scissile bond to the S1 site and subsequent molecular dynamics leads to interactions of the PAR2 ectodomain with P and P′ sites of the FVIIa catalytic cleft as well as to electrostatic interactions between a stably folded region of PAR2 and a cluster of basic residues remote from the catalytic cleft of FVIIa. To address the functional significance of this interaction for PAR2 cleavage, we employed two antibodies with epitopes previously mapped to this cluster of basic residues. Although these antibodies do not block the catalytic cleft, both antibodies completely abrogated PAR2 activation by TF‐FVIIa. Our simulations indicate a conformation of the PAR2 ectodomain that limits the cleavage site to no more than 33 Å from its membrane proximal residue. Since the active site of FVIIa in the TF‐FVIIa complex is ~75 Å above the membrane, cleavage of the folded conformation of PAR2 would require tilting of the TF‐FVIIa complex toward the membrane, indicating that additional cellular factors may be required to properly align the scissile bond of PAR2 with TF‐FVIIa. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The human plasma serine protease, activated protein C (APC), primarily exerts its anticoagulant function by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. A recombinant active site Ser 360 to Ala mutation of protein C was prepared, and the mutant protein was expressed in human 293 kidney cells and purified. The activation peptide of the mutant protein C zymogen was cleaved by a snake venom activator, Protac C, but the "activated" S360A APC did not have amidolytic activity. However, it did exhibit significant anticoagulant activity both in clotting assays and in a purified protein assay system that measured prothrombinase activity. The S360A APC was compared to plasma-derived and wild-type recombinant APC. The anticoagulant activity of the mutant, but not native APC, was resistant to diisopropyl fluorophosphate, whereas all APCs were inhibited by monoclonal antibodies against APC. In contrast to native APC, S360A APC was not inactivated by serine protease inhibitors in plasma and did not bind to the highly reactive mutant protease inhibitor M358R alpha 1 antitrypsin. Since plasma serpins provide the major mechanism for inactivating APC in vivo, this suggests that S360A APC would have a long half-life in vivo, with potential therapeutic advantages. S360A APC rapidly inhibited factor Va in a nonenzymatic manner since it apparently did not proteolyze factor Va. These data suggest that native APC may exhibit rapid nonenzymatic anticoagulant activity followed by enzymatic irreversible proteolysis of factor Va. The results of clotting assays and prothrombinase assays showed that S360A APC could not inhibit the variant Gln 506-FVa compared with normal Arg 506-FVa, suggesting that the active site of S360A APC binds to FVa at or near Arg 506.  相似文献   

18.
The contribution of induced fit to enzyme specificity has been much debated, although with little experimental data. Here we probe the effect of induced fit on enzyme specificity using the trypsin(ogen) system. BPTI is known to induce trypsinogen to assume a trypsinlike conformation. Correlations are observed between BPTI affinity and the values of k(cat)/K(m) for the hydrolysis of two substrates by eight trypsin(ogen) variants. The slope of both correlations is -1.8. The crystal structures of the BPTI complexes of four variant trypsinogens were also solved. Three of these enzymes, K15A, DeltaI16V17/D194N, and DeltaI16V17/Q156K trypsinogen, are 10- to 100-fold more active than trypsinogen. The fourth variant, DeltaI16V17 trypsinogen, is the lone outlier in the correlations; its activity is lower than expected based on its affinity for BPTI. The S1 site and oxyanion hole, formed by segments 184A-194 and 216-223, are trypsinlike in all of the enzymes. These structural and kinetic data confirm that BPTI induces an active conformation in the trypsin(ogen) variants. Thus, changes in BPTI affinity monitor changes in the energetic cost of inducing a trypsinlike conformation. Although the S1 site and oxyanion hole are similar in all four variants, the N-terminal and autolysis loop (residues 142-152) segments have different interactions for each variant. These results indicate that zymogen activity is controlled by a simple conformational equilibrium between active and inactive conformations, and that the autolysis loop and N-terminal segments control this equilibrium. Together, these data illustrate that induced fit does not generally contribute to enzyme specificity.  相似文献   

19.
Summary A endothelial cell glycoprotein that inhibits the initiation of the coagulation process promoted by tissue factor has been isolated by heparin-sepharose, hydroxyapatite and gel filtration chromatography. As is the case for several other species synthesized by this cell type, the N-linked carbohydrate moiety is sulfated. The identification of this inhibitor hints at the possible existence of a functional balance, between the actvvator of the coagulation cascade and its inhibitor, which may become perturbed in various pathophysiological conditions. This work was supported by grants from NHLB Institute, RJR Nabisco and the Council for Tobacco Research. Editor's statement This paper describes a heparin-binding factor capable of inhibiting coagulation. The work contributes toward understanding the processes of cellular hemostasis, and also may represent the first report of a protein that could find widespread therapeutic use.  相似文献   

20.
Past studies have suggested that a key feature of the mechanism of heparin allosteric activation of the anticoagulant serpin, antithrombin, is the release of the reactive center loop P14 residue from a native state stabilizing interaction with the hydrophobic core. However, more recent studies have indicated that this structural change plays a secondary role in the activation mechanism. To clarify this role, we expressed and characterized 15 antithrombin P14 variants. The variants exhibited basal reactivities with factors Xa and IXa, heparin affinities and thermal stabilities that were dramatically altered from wild type, consistent with the P14 mutations perturbing native state stability and shifting an allosteric equilibrium between native and activated states. Rapid kinetic studies confirmed that limiting rate constants for heparin allosteric activation of the mutants were altered in conjunction with the observed shifts of the allosteric equilibrium. However, correlations of the P14 mutations'' effects on parameters reflecting the allosteric activation state of the serpin were inconsistent with a two-state model of allosteric activation and suggested multiple activated states. Together, these findings support a minimal three-state model of allosteric activation in which the P14 mutations perturb equilibria involving distinct native, intermediate, and fully activated states wherein the P14 residue retains an interaction with the hydrophobic core in the intermediate state but is released from the core in the fully activated state, and the bulk of allosteric activation has occurred in the intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号