首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded RNA viruses of Ustilago maydis encode secreted killer toxins to which other cells of the same species and closely related species are sensitive. KP6 toxin consists of two polypeptides, α and β, produced from a single precursor preprotoxin. In this work, we cloned complementary DNA for the toxin-encoding segment of two of the KP6 nonkiller mutants NK3 and NK13 that secrete the β and α polypeptides, respectively. Both sequence analysis of the cDNA clones and in vitro translation of the toxin-encoding double-stranded RNAs showed that both mutants can produce full-length preprotoxins. Cys51 in α is converted to Arg in NK3 and Thr25 and Lys42 in β are changed to Pro and Arg, respectively, in NK13. Although α and β are encoded in a single prepropolypeptide, only the β polypeptide is secreted by NK3 and only the α polypeptide is secreted by NK 13. This differential expression of peptides from one precursor is a unique phenomenon. Neither of the nonsecreted polypeptides accumulated in the cytosol. The possible effects of these mutations on pre-protoxin folding and their consequences for toxin secretion are discussed.  相似文献   

2.
There are a number of yeasts that secrete killer toxins, i.e., proteins lethal to sensitive cells of the same or related species. Ustilago maydis, a fungal pathogen of maize, also secretes killer toxins. The best characterized of the U. maydis killer toxins is the KP6 toxin, which consists of two small polypeptides that are not covalently linked. In this work, we show that both are encoded by one segment of the genome of a double-stranded RNA virus. They are synthesized as a preprotoxin that is processed in a manner very similar to that of the Saccharomyces cerevisiae k1 killer toxin, also encoded by a double-strand RNA virus. Active U. maydis KP6 toxin was secreted from S. cerevisiae transformants expressing the KP6 preprotoxin. The two secreted polypeptides were not glycosylated in U. maydis, but one was glycosylated in S. cerevisiae. Comparison of known and predicted cleavage sites among the five killer toxins of known sequence established a three-amino-acid specificity for a KEX2-like enzyme and predicted a new, undescribed processing enzyme in the secretory pathway in the fungi. The mature KP6 toxin polypeptides had hydrophobicity profiles similar to those of other known cellular toxins.  相似文献   

3.
In vesicular stomatitis virus New Jersey serotype polyacrylamide gel electrophoresis was unable to distinguish the polypeptides of the temperature-sensitive (ts) mutants of complementation groups A, B, C, and F from those of the wild-type virus. However, the NS polypeptide of the representative mutant of group E, ts E1, had a significantly greater electrophoretic mobility than that of the wild-type virus NS polypeptide. The electrophoretic mobilities of the NS polypeptides of the three mutants of complementation group E varied, being greatest in the case of ts E1, slightly less for ts E2, and only a little greater than that of wild-type virus NS polypeptide in the case of ts E3. Since the NS polypeptides of the revertant clones ts E1/R1 and ts E3/R1 have mobilities identical to that of wild-type NS polypeptide, the observed altered mobilities of the group E mutants are almost certainly the direct result of the ts mutations in the E locus. The electrophoretic mobilities of the intracellular NS polypeptides of the group E mutants were indistinguishable from those of their virion NS polypeptides. The electrophoretic mobilities of the NS polypeptides of the group E mutants synthesized in vitro using mRNA synthesized in vitro by TNP were identical to those of the NS polypeptides of their purified virions. The NS polypeptides of all three mutants were labeled with (32)P(i) to approximately the same extent as wild-type virus NS polypeptide, indicating that gross differences in phosphorylation of this polypeptide are unlikely to account for the altered mobilities. We propose a model in which the NS polypeptide consists of at least three loops held in this configuration by hydrophobic or ionic forces or both and stabilized by phosphodiester bridges. If a mutation affects one of the amino acids to which the phosphate is covalently linked, the phosphodiester bridge cannot be formed, and, as a result, in the presence of sodium dodecyl sulfate the affected loop opens and thus the NS polypeptide migrates further into the gel. Such a configuration may also explain the multifunctional nature of the NS polypeptide.  相似文献   

4.
The mosquito-larvicidal binary toxin from Bacillus sphaericus is composed of two polypeptides called BinA and BinB with molecular masses of approximately 42 and 51 kDa. Both components are required for full activity, with BinB acting as a specificity determinant and BinA being responsible for toxic action. To investigate the role of the selected charged residues in BinA, four mutants were generated by replacing charged amino acids with alanine (R97A, E98A, R101A, and E114A). All mutant proteins were produced at high levels and formed inclusion bodies similar to that of the wild type. Mosquito-larvicidal assays against Culex quinquefasciatus larvae revealed that the mutant R97A completely lost its activity and mutants E98A, R101A, and E114A showed significantly reduced toxicity. Intrinsic fluorescence spectroscopy analysis indicated that alanine substitutions at these positions did not alter the overall structure of the toxin. Binding of the mutants to BinB was not different from that of the wild type, suggesting that these mutations did not affect BinA-BinB interaction. Results demonstrated that R97, E98, R101, and E114 neither play a direct role in maintenance of BinA structure nor are involved in BinA-BinB interaction. Since these residues are required for full activity, they may play an important role during toxin internalization and/or toxic action of BinA inside the target cells.  相似文献   

5.
The ADP-ribosyltransferase activity of polypeptide A1 of cholera toxin and that of Escherichia coli heat-labile enterotoxin (LT) are primarily responsible for the toxic activities of these toxins. Since the amino acid sequences of the two A1 polypeptides are very similar, their functional mechanisms are considered to be the same. Arg-146 of polypeptide A1 is thought to be involved in the active site, because this amino acid of cholera toxin has been identified as the site of self-ADP-ribosylation. However, the exact role of Arg-146 and the significance of self-ADP-ribosylation in toxicity remain unclear. We substituted Arg-146 of polypeptide A1 of LT with Gly by oligonucleotide-directed mutagenesis and examined the biological property of the resultant mutant LT. The substitution changed the mobility of subunit A on sodium dodecyl sulfate-polyacrylamide gel but did not reduce the vascular permeability activity of LT. This result indicates that Arg-146 is not absolutely required for toxic activity and that LT can express its toxic activity without self-ADP-ribosylation at Arg-146.  相似文献   

6.
We have examined the phosphorylation of a 50,000-dalton cellular polypeptide associated with the Rous sarcoma virus (FSV) transforming protein pp60-src. It has been shown that pp60src forms a complex with two cellular polypeptides, an 89,000-dalton heat-shock protein (89K) and a 50,000-dalton phosphoprotein (50K). The pp60src-associated protein kinase activity phosphorylates at tyrosine residues, and the 50K polypeptide present in the complex contains phosphotyrosine and phosphoserine. These observations suggest that the 50K polypeptide may be a substrate for the protein kinase activity of pp60src. To examine this possibility, we isolated the 50K polypeptide by two-dimensional polyacrylamide gel electrophoresis from lysates of uninfected or virally infected cells. Tryptic phosphopeptide analysis indicated that the 50K polypeptide isolated by this method was the same polypeptide as that complexed to pp60src. In uninfected cells or cells infected by a transformation-defective mutant, the 50K polypeptide contained phosphoserine but little or no phosphotyrosine. In cells infected by Schmidt-Ruppin or Prague RSV, there was a 40- to 50-fold increase in the quantity of phosphotyrosine in the 50K protein. Thus, the phosphorylation of the 50K polypeptide at tyrosine is dependent on the presence of pp60src. However, the 50K polypeptide isolated from cells infected by temperature-sensitive mutants of RSV was found to be phosphorylated at tyrosine at both permissive and nonpermissive temperatures; this behavior is different from that of other substrates or putative substrates of the pp60src kinase activity. It is possible that the 50K polypeptide is a high-affinity substrate of pp60src.  相似文献   

7.
Adenylate cyclase toxin (CyaA) of Bordetella pertussis belongs to the RTX family of toxins. These toxins are characterized by a series of glycine- and aspartate-rich nonapeptide repeats located at the C-terminal half of the toxin molecules. For activity, RTX toxins require Ca2+, which is bound through the repeat region. Here, we identified a stretch of 15 amino acids (block A) that is located C-terminally to the repeat region and is essential for the toxic activity of CyaA. Block A is required for the insertion of CyaA into the plasma membranes of host cells. Mixing of a short polypeptide composed of block A and eight Ca2+ binding repeats with a mutant of CyaA lacking block A restores toxic activity fully. This in vitro interpolypeptide complementation is achieved only when block A is present together with the Ca2+ binding repeats on the same polypeptide. Neither a short polypeptide composed of block A only nor a polypeptide consisting of eight Ca2+ binding repeats, or a mixture of these two polypeptides, complement toxic activity. It is suggested that functional complementation occurs because of binding between the Ca2+ binding repeats of the short C-terminal polypeptide and the Ca2+ binding repeats of the CyaA mutant lacking block A.  相似文献   

8.
We have isolated spontaneous temperature-resistant revertants of a temperature-sensitive mutation (rpoD800) in the sigma subunit of E. coli K12 RNA polymerase. These revertants still contained the rpoD800 allele. They were mucoid, and sensitive to ultraviolet light and the radiomimetic agent nitrofurantoin, which are characteristics of lon mutants. One revertant, Tr29, was mapped to the lon region of the chromosome. Lon- rpoD800 double mutants were constructed, and were phenotypically indistinguishable from the spontaneous temperature-resistant revertant. It is the degradation-deficient property of lon mutants that is responsible for the suppression of the temperature-sensitive phenotype. We show that the rpoD800 sigma polypeptide is a substrate for the ion proteolytic system, and that mutations in lon decrease the rate of mutant sigma degradation. The rate of synthesis of mutant sigma was also affected in lon- strains. The net effect of lon-mutations was to increase the concentration of mutant sigma. We conclude that the temperature-sensitive phenotype results from insufficient concentration, rather than altered function, of the mutant protein.  相似文献   

9.
Ustilago maydis is a fungal pathogen of maize. Some strains of U. maydis encode secreted polypeptide toxins capable of killing other susceptible strains of U. maydis. We show here that one of these toxins, the KP6 killer toxin, is synthesized by transgenic tobacco plants containing the viral toxin cDNA under the control of a cauliflower mosaic virus promoter. The two components of the KP6 toxin, designated alpha and beta, with activity and specificity identical to those found in toxin secreted by U. maydis cells, were isolated from the intercellular fluid of the transgenic tobacco plants. The beta polypeptide from tobacco was identical in size and N-terminal sequence to the U. maydis KP6 beta polypeptide. Processing of the KP6 preprotoxin in U. maydis requires a subtilisin-like processing protease, Kex2p, which is present in both animal and fungal cells and is required for processing of (among other things) small secreted polypeptide hormones and secreted toxins. Our findings present evidence for Kex2p-like processing activity in plants. The systemic production of this viral killer toxin in crop plants may provide a new method of engineering biological control of fungal pathogens in crop plants.  相似文献   

10.
Ustilago maydis is a fungal pathogen of maize, some strains of which secrete killer toxins. The toxins are encoded by double-stranded RNA viruses in the cell cytoplasm. The U. maydis killer toxin KP6 contains two polypeptide chains, alpha and beta, having 79 and 81 amino acids, respectively, both of which are necessary for its killer activity. The crystal structure of the alpha-subunit of KP6 (KP6alpha) has been determined at 1.80-A resolution. KP6alpha forms a single domain structure that has an overall shape of an ellipsoid with dimensions 40 A x 26 A x 21 A and belongs to the alpha/beta-sandwich family. The tertiary structure consists of a four-stranded antiparallel beta-sheet, a pair of antiparallel alpha-helices, a short strand along one edge of the sheet, and a short N-terminal helix. Although the fold is reminiscent of toxins of similar size, the topology of KP6alpha is distinctly different in that the alpha/beta-sandwich motif has two right-handed betaalphabeta split crossovers. Monomers of KP6alpha assemble through crystallographic symmetries, forming a hexamer with a central pore lined by hydrophobic N-terminal helices. The central pore could play an important role in the mechanism of the killing action of the toxin.  相似文献   

11.
Cyt2Aa2 is a cytolytic toxin produced by Bacillus thuringiensis subsp. darmstadiensis. It is specifically toxic to dipteran larvae in vivo and is also active against several cell types, such as erythrocytes. The active toxin is proposed to bind to the cell membrane, and membrane pore formation by toxin oligomerisation leads to cell lysis. This study aimed to characterise the role of residues (I139, S159, L160, S161, A162, D209 and V215) potentially involved in the membrane binding of Cyt2Aa2. All mutants, except I139A and V215A, showed similar characteristics to the wild-type toxin after proteinase K cleavage. Three mutants, S159A, L160A and S161A, showed high haemolytic activity but low toxicity against Aedes aegypti. Membrane interaction assays showed that these mutants could bind to rat red blood cells (rRBCs) and oligomerise. The mutant D209N had no haemolytic activity but was still mildly toxic to A. aegypti. The mutant A162V could not lyse rRBCs, even at high concentrations, and showed no toxicity against A. aegypti. Our data suggest that alanine 162 of the Cyt2Aa2 toxin is involved in membrane binding and oligomerisation. Substitution of this amino acid altered the conformation of the toxin and affected its biological activity.  相似文献   

12.
The phenylalanyl-transfer ribonucleic acid synthetase of Escherichia coli is a tetramer that contains two different kinds of polypeptide chains. To locate the genes for the two polypeptides, we analyzed temperature-sensitive mutants with defective phenylalanyl-transfer ribonucleic acid synthetases to see which subunit was altered. The method was in vitro complementation; mutant cell extracts were mixed with purified separated alpha or beta subunits of the wild-type enzyme to generate an active hybrid enzyme. With three mutants, enzyme activity appeared when alpha was added, but not when beta was added: these are, therefore, assumed to carry lesions in the gene for the alpha subunit. Two other mutants gave the opposite response and are presumably beta mutants. Enzyme activity is also generated when alpha and beta mutant extracts are mixed, but not when two alpha or two beta mutant extracts are mixed. The inactive mutant enzymes appear to be dissociated, as judged by their sedimentation in sucrose density gradients, but the dissociation may be only partial. The active enzyme generated by complementation occurred in two forms, one that resembled the native wild-type enzyme and one that sedimented more slowly. Both alpha and beta mutants are capable of generating the native form, although alpha mutants require prior urea denaturation of the defective enzyme. With the mutants thus characterized, the genes for the alpha and beta subunits (designated pheS and heT, respectively) were mapped. The gene order, as determined by transduction is aroD-pps-pheT-pheS. The pheS and pheT genes are close together and may be immediately adjacent.  相似文献   

13.
Double-stranded RNA viruses of Ustilago maydis encode secreted killer toxins to which other cells of the same species and closely related species are sensitive. KP6 toxin consists of two polypeptides, and , produced from a single precursor preprotoxin. In this work, we cloned complementary DNA for the toxin-encoding segment of two of the KP6 nonkiller mutants NK3 and NK13 that secrete the and polypeptides, respectively. Both sequence analysis of the cDNA clones and in vitro translation of the toxin-encoding double-stranded RNAs showed that both mutants can produce full-length preprotoxins. Cys51 in is converted to Arg in NK3 and Thr25 and Lys42 in are changed to Pro and Arg, respectively, in NK13. Although and are encoded in a single prepropolypeptide, only the polypeptide is secreted by NK3 and only the polypeptide is secreted by NK 13. This differential expression of peptides from one precursor is a unique phenomenon. Neither of the nonsecreted polypeptides accumulated in the cytosol. The possible effects of these mutations on pre-protoxin folding and their consequences for toxin secretion are discussed.  相似文献   

14.
Four mutants specifically deficient in the activity of isocitrate lyase were independently isolated in the alkane yeast Saccharomycopsis lipolytica. Genetic analysis by means of protoplast fusion and mitotic haploidization revealed that the mutations were recessive and non-complementary at a single genetic locus, icl. icl is a structural gene for isocitrate lyase, because some revertants from icl-1 and icl-3 mutants produced thermolabile isocitrate lyase in comparison with the wild-type enzyme, and also because the gene dosage effect was observed on the specific activity of isocitrate lyase in icl+/icl-1 and icl+/icl-3 heterozygotes. The icl-3 mutation also gave rise to temperature-sensitive revertants that could grow on acetate at 23 degrees C but not at 33 degrees C, exhibiting temperature-sensitive synthesis as well as thermostable activity of isocitrate lyase. Studies on purified isocitrate lyase showed that this enzyme is tetrameric and that the enzyme synthesized at 23 degrees C by a temperature-sensitive synthesis mutant was indistinguishable from the wild-type enzyme with respect to the subunit molecular weight (59,000), the isoelectric pH (5.3), the thermostability, and the Km value for threo-Ds-isocitrate (0.2 mM). When induced by acetate at 33 degrees C, the temperature-sensitive synthesis mutant did not express isocitrate lyase activity but did synthesize polypeptides whose electrophoretic mobilities were equal to that of the purified mutant enzyme. Hence, the temperature-sensitive mutation assumed in the structural gene for isocitrate lyase might have prevented the maturation of the polypeptide chains synthesized at the restrictive temperature.  相似文献   

15.
16.
Chemically induced mutants of an I-Ak,d-expressing, antigen-presenting B cell-B lymphoma hybridoma have recently been generated by immunoselection in vitro with I-Ak-specific monoclonal antibodies, and were found to possess alterations in some of the I-Ak region-dependent functions. The mutants were categorized as alpha-polypeptide mutants or beta-polypeptide mutants on the basis of the patterns of reactivity with anti I-Ak alpha and anti I-Ak beta monoclonal antibodies. To delineate the structural alterations underlying the differences in serologic and functional properties of these mutants, I-A molecules from several of these mutant hybridomas were compared biochemically with wild type I-Ak polypeptides by two-dimensional gel electrophoresis and high-pressure liquid chromatographic (HPLC) tryptic peptide analyses. These results suggest that the marked alterations in antibody reactivity and T cell-activating functions of the beta-polypeptide mutants G1, K2, and LD3, as well as the Ia alpha-polypeptide mutant JE50, may be due to very limited alterations in the Ia polypeptides. The functional deficiencies of the alpha-polypeptide mutant JE67 could be attributed to the change in net charge exhibited by its Ak alpha polypeptide. HPLC tryptic peptide analysis of I-A molecules isolated from the alpha-polypeptide mutant J4 indicates that the functional deficiencies exhibited by this mutant are due to a complete loss of expression of the Ak alpha polypeptide. The inability to detect significant amounts of Ad alpha Ak beta and Ak alpha Ad beta hybrid molecules in immunoprecipitates from some of these cell lines suggests that some hybrid molecules may be expressed at low levels due to preferential Ia polypeptide chain association. Together, these results indicate that most serologically defined epitopes are localized on either one or the other Ia polypeptide, whereas T cell-defined epitopes are determined by a combination of both Ia polypeptides. The results of these analyses also enable us to evaluate different immunoselection strategies for the most efficient production of mutants expressing limited alterations in Ia polypeptides.  相似文献   

17.
To study the effects of missense, nonsense, and deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1, a gB-transformed cell line was isolated that, after virus infection, would express sufficient quantities of gB from the cellular chromosome to complement temperature-sensitive gB mutants. The transformed cell line was then used as a permissive cell to transfer two gB mutations from plasmid to viral DNA. One of the mutants, K082, harbored an HpaI linker insertion that introduced one new amino acid and a chain terminator codon within amino acid residue 43. The other mutant contained a 969-base-pair deletion in a part of the gene that includes the membrane-spanning region; a correspondingly shorter gB polypeptide was detected by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation of infected-cell extracts with four pooled monoclonal antibodies. No polypeptide was observed from K082-infected cells. The shortened gB polypeptide was efficiently processed and secreted into the growth medium. Each of the four monoclonal antibodies precipitated full-length gB, and three of the four precipitated the shortened polypeptide. Enveloped virus particles could be purified after infection of nonpermissive cells with either mutant virus. Virus particles appeared to possess normal polypeptide and glycopeptide profiles except for the absence of gB. Therefore, the presence of gB is not essential for viral assembly, including envelopment. Recombinants in virus stocks grown on the gB-transformed cells occurred at frequencies on the order of 10(-7) to 10(-5), compared with a frequency of approximately 10(-2) in mixed infections with the two mutants.  相似文献   

18.
Insecticidal crystal proteins (delta-endotoxins), CryIA(a) and CryIA(c), from Bacillus thuringiensis are 82% homologous. Despite this homology, CryIA(c) was determined to have 10-fold more insecticidal activity toward Heliothis virescens and Trichoplusia ni than CryIA(a). Reciprocal recombinations between these two genes were performed by the homolog-scanning technique. The resultant mutants had different segments of their primary sequences exchanged. Bioassays with toxin proteins from these mutants revealed that amino acids 335-450 on CryIA(c) are associated with the activity against T. ni, whereas amino acids 335-615 on the same toxin are required to exchange full H. virescens specificity. One chimeric protein toxin, involving residues 450-612 from CryIA(c), demonstrated 30 times more activity against H. virescens than the native parental toxin, indicating that this region plays an important role in H. virescens specificity. The structural integrity of mutant toxin proteins was assessed by treatment with bovine trypsin. All actively toxic proteins formed a 65-kDA trypsin-resistant active toxic core, similar to the parental CryIA(c) toxin, indicating that toxin protein structure was not altered significantly. Contrarily, certain inactive mutant proteins were susceptible to complete protease hydrolysis, indicating that their lack of toxicity may have been due to structural alterations.  相似文献   

19.
Ricin is a heterodimeric plant protein that is potently toxic to mammalian cells. Toxicity results from the catalytic depurination of eukaryotic ribosomes by ricin toxin A chain (RTA) that follows toxin endocytosis to, and translocation across, the endoplasmic reticulum membrane. To ultimately identify proteins required for these later steps in the entry process, it will be useful to express the catalytic subunit within the endoplasmic reticulum of yeast cells in a manner that initially permits cell growth. A subsequent switch in conditions to provoke innate toxin action would permit only those strains containing defects in genes normally essential for toxin retro-translocation, refolding or degradation to survive. As a route to such a screen, several RTA mutants with reduced catalytic activity have previously been isolated. Here we report the use of Saccharomyces cerevisiae to isolate temperature-dependent mutants of endoplasmic reticulum-targeted RTA. Two such toxin mutants with opposing phenotypes were isolated. One mutant RTA (RTAF108L/L151P) allowed the yeast cells that express it to grow at 37 degrees C, whereas the same cells did not grow at 23 degrees C. Both mutations were required for temperature-dependent growth. The second toxin mutant (RTAE177D) allowed cells to grow at 23 degrees C but not at 37 degrees C. Interestingly, RTAE177D has been previously reported to have reduced catalytic activity, but this is the first demonstration of a temperature-sensitive phenotype. To provide a more detailed characterization of these mutants we have investigated their N-glycosylation, stability, catalytic activity and, where appropriate, a three-dimensional structure. The potential utility of these mutants is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号