首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of the synthesis of secreted enzymes endo-1,4-beta-xylanase (EC 3.2.1.8) and beta-galactosidase (EC 3.2.1.23) in the original and recombinant Penicillium canescens strains has been studied. In all producer strains, the synthesis of these enzymes was induced by arabinose and its metabolite arabitol. The two enzymes differed in the concentration of arabinose required for the induction: the synthesis of beta-galactosidase was most pronounced at 1 mM, whereas maximum synthesis of endo-1,4-beta-xylanase was observed at 5 to 10 mM. An increase in the number of endo-1,4-beta-xylanase copies in the high-copy-number strain of the fungus suppressed the synthesis of beta-galactosidase; the synthesis of endo-1,4-beta-xylanase in the high-copy-number recombinant producing beta-galactosidase was affected to a lesser extent. The amount of the enzymes synthesized did not depend on the saccharide used as a sole source of carbon for growing the mycelium prior to its transfer to the inducer-containing medium.  相似文献   

2.
Three prototrophic strains of Cephalosporium acremonium with different potentials for cephalosporin C production show pronounced differences in pools of intracellular sulphur amino acids. The superior strain exhibits the largest pool, particularly of cysteine (four times that of the non-producing strain). In fermentations with this strain methionine was found to be a much better sulphur source than sulphate for both cysteine and antibiotic synthesis. In the presence of methionine the utilization of sulphate is strongly depressed.  相似文献   

3.
1. Regulation of four enzymes involved in cysteine and homocysteine synthesis, i.e. cysteine synthase (EC 4.2.99.8), homocysteine synthase (EC 4.1.99.10), cystathionine beta-synthase (EC 2.1.22) and gamma-cystathionase (EC 4.4.1.1) was studied in the wild type and sulphur regulatory mutants of Neurospora crassa. 2. Homocysteine synthase and cystathionine beta-synthase were found to be regulatory enzymes but only the former is under control of the cys-3 - scon system regulating several enzymes of sulphur metabolism, including gamma-cystathionase. 3. The results obtained with the mutants strongly suggest that homocysteine synthase plays a physiological role as an enzyme of the alternative pathway of methionine synthesis. Cysteine synthase activity was similar in all strains examined irrespective of growth conditions. 4. The sconc strain with derepressed enzymes of sulphur metabolism showed an increased pool of sulphur amino acids, except for methionine. Particularly characteristic for this pool is a high content of hypotaurine, a product of cysteine catabolism.  相似文献   

4.
More than 80 cultures of actinomycetes belonging to different taxanomic groups were studied with a purpose of screening actinomycetes actively producing enzymes lyzing the cell walls of group A streptococci. 31 strains of the actinomycetes producing enzymes which lyzed the cell walls by 20-50 and 60-80 per cent within 1 and 4 hours respectively were selected. The proteolytic activity of the enzymes produced by these strains was also studied. It was shown that 4 cultures, i.e. Actinomyces albus, strains 6 and 9, Actinomyces levoris, strain 29 and Actinomyces gibsonii, strain 42 were of interest as organisms producing enzymes which lyzed the streptococcal cell wall without impairing its antigenic components.  相似文献   

5.
Mutations in a regulator gene (capR) that causes increased synthesis of capsular polysaccharide and derepressed synthesis of several enzymes involved in polysaccharide synthesis also derepress synthesis of guanosine diphosphate (GDP)-mannose pyrophosphorylase. In addition, a second mucoid mutation (capS, which maps separately from capR) also results in the derepression of GDP-mannose pyrophosphorylase. New conditions for assaying GDP-mannose hydrolyase and GDP-l-fucose synthetase permitted us to show that these enzymes are also derepressed in the capS mucoid strain. Although phosphomannose isomerase and uridine diphosphate-galactose-4-epimerase are derepressed in capR mucoid strains, they are not derepressed in capS mucoid strains. A nonmucoid mutant of a strain containing the capR9 (mucoid) allele was deficient in GDP-mannose pyrophosphorylase.  相似文献   

6.
In Aspergillus nidulans homocysteine can be metabolized both to cysteine and methionine. Mutants impaired in the main pathway of cysteine synthesis or in the sulphate assimilation pathway show a low pool of glutathione and elevated levels of homocysteine synthase and of the homocysteine-to-cysteine pathway enzymes. On the other hand, the level of methionine synthase and other enzymes of folate metabolism is depressed in these mutants. This anticoordinated regulation provides a mechanism controlling the partition of homocysteine between the two diverging pathways. Homocysteine synthase was found derepressed, along with folate enzymes, in a strain carrying a mutation which suppresses mutations in metA, metB and metG genes. These results indicate that homocysteine synthase can be regarded as the enzyme of an alternative pathway of methionine synthesis and strongly suggest that the regulatory mechanisms governing sulphur-containing amino acid and folate metabolisms are interrelated.  相似文献   

7.
Summary Wild-type strains ofPenicillium chrysogenum produce lower penicillin V titers in media containing excess glucose. Two mutant strains were isolated and shown to produce normal penicillin V titers in the presence of excess glucose. These strains, designated as glucose-repression insensitive (GRI) mutants, produced higher penicillin V titers than the wild-type strain in media containing lactose as the main carbohydrate source. In lactose-based media, the production of penicillin V was depressed to a much lesser extent by in-cycle additions of glucose with the GRI mutants when compared to the wild-type strain. In short-term biosynthesis experiments using washed cells in a medium containing glucose as the sole carbon source, the GRI mutants produced penicillin V at a faster rate than the wild-type strain. In fed-batch fermentations in 14-liter fermentors, where glucose was fed continuously and pH controlled, both GRI mutants produced more than 10% higher penicillin V titers than the wild-type strain. These results suggest that isolation of GRI mutants is an effective way to select for higher producing strains and that the synthesis of penicillin synthesizing enzymes in GRI mutants may be less repressed by glucose than in wild-type strains.  相似文献   

8.
Glutathione-deficient mutants (gshA) of the yeast Saccharomyces cerevisiae, impaired in the first step of glutathione (GSH) biosynthesis were studied with respect to the regulation of enzymes involved in GSH catabolism and cysteine biosynthesis. Striking differences were observed in the content of the sulphur amino acids when gshA mutants were compared to wild-type strains growing on the same minimal medium. Furthermore, all mutants examined showed a derepression of gamma-glutamyltranspeptidase (gamm-GT), the enzyme initiating GSH degradation. However, gamma-cystathionase and cysteine synthase were unaffected by the GSH deficiency as long as the nutrient sulphate source was not exhausted. The results suggest that the mutants are probably not impaired in the sulphate assimilation pathway, but that the gamma-glutamyl cycle could play a leading role in the regulation of the sulphur fluxes. Studies of enzyme regulation showed that the derepression of gamma-GT observed in the gshA strains was most probably due to an alteration of the thiol status. The effectors governing the biosynthesis of cysteine synthase and gamma-cystathionase seemed different from those playing a role in gamma-GT regulation and it was only under conditions of total sulphate deprivation that all these enzymes were derepressed. As a consequence the endogenous pool of GSH was used in the synthesis of cysteine. GSH might, therefore, fulfil the role of a storage compound.  相似文献   

9.
ABSTRACT: BACKGROUND: Microcystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production. RESULTS: 2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain. CONCLUSIONS: These data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.  相似文献   

10.
肌苷合成关键酶活性与肌苷积累之间的关系   总被引:3,自引:0,他引:3  
测定比较了高产肌苷菌、低产肌苷菌和野生菌肌苷合成途径中PRPP转酰胺酶、sAMP合成酶、IMP脱氢酶和5′核苷酸酶的比活以及活细胞的肌苷水解能力,进一步阐明了菌株产苷性能与肌苷合成途径关键酶活力间的密切关系。根据高产肌苷菌的酶学特性,确定了高产肌苷菌进一步基因工程改造的方向。研究表明酶学研究对有目的、有方向地进行高产菌株的选育工作具有重要意义。  相似文献   

11.
We have analyzed a step in cysteine biosynthesis in several strains of the pathogenic dimorphic fungus, Histoplasma capsulatum. Mycelial cells of all strains tested are prototrophic. However, the yeast phase cells of most stains do not grow in the absence of -SH-containing compounds due to the apparent lack of an active form of sulfite reductase, a crucial enzyme in the cysteine biosynthetic pathway. In contrast, the yeast phase cells of one strain (Downs) have been found to have an active sulfite reductase and can grow in the absence of cysteine if serine is added. A different metabolic block must thus exist in this strain. Sulfite reductase in the yeast form of Downs strain is completely repressed by growth on cysteine while the mycelial form seems to be constitutive. The yeast and mycelial phase extracts were analyzed on polyacrylamide gels. A distinct protein band appeared in extracts prepared from the yeast cells incubated in minimal or serine-containing media, but not in extracts from mycelia or from cysteine-grown yeast cells.  相似文献   

12.
Four strains of wine yeasts of two different species (Saccharomyces cerevisiae var. ellipsoideus and Saccharomyces bayanus) were investigated with respect to the influence of various sulfur compounds on the formation of O-acetylserine sulfhydrylase, O-acetylhomoserine sulfhydrylase and serine sulfhydrase. The specific enzyme activities were followed over a growth period of 96 h.In the presence of sulfate, sulfite and djencolic acid during exponential growth, a moderate increase of O-acetylserine sulfhydrylase and O-acetylhomoserine sulfhydrylase activities was recognized. In three strains cysteine and methionine prevented this derepression. At the end of the exponential growth phase, biosynthesis of these two enzymes was suppressed again. Serine sulfhydrase showed a modified regulation which indicates that its synthesis and the synthesis of O-acetylserine and O-acetylhomoserine sulfhydrylases are not coordinated.Abbreviations OAS O-acetylserine - OAHS O-acetylhomoserine  相似文献   

13.
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5′-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.  相似文献   

14.
I. BALOGH AND A. MARÁZ. 1996. STA genes are responsible for producing extracellular glucoamylase enzymes in Saccharomyces cerevisiae var. diastaticus . These genes exist in three forms, which are located on three different chromosomes. The nucleotide sequences of the STA genes are highly homologous. A sporulation-specific glucoamylase gene called SGA1 exists in every Saccharomyces cerevisiae strain, this also having a partly homologous DNA sequence with the STA genes. In this study S. cerevisiae var. diastaticus and brewer's yeast strains were characterized by pulsed-field gel electrophoresis. In many cases chromosome length polymorphism (CLP) was found. The chromosomes were hybridized with a DNA probe which was homologous with STA genes and the SGA1 gene. Presence of the SGA1 gene was detected in each strain used. Four brewing yeasts were found to have homologous sequences with the STA3 gene on chromosome XIV despite the fact that these strains were not able to produce extracellular glucoamylase enzyme.  相似文献   

15.
Mutant strains not producing cellulases were induced and isolated from the cellulolytic fungus Trichoderma viride. Enrichment of mutants was carried out with the aid of nystatin selection. Mutants were shown to lack the ability to hydrolyze both soluble and crystalline cellulose. Mannanase and xylanase activities were also absent, indicating a common regulation for all these enzymes in T. viride. In some strains aryl-beta-glucosidase activity was also missing. Mutants grew normally, but the amount of proteins secreted into the medium was very low, and in most cases these proteins were qualitatively different from the proteins of the parent strain.  相似文献   

16.
Arsenic is one of the most hazardous pollutants found in aqueous environments and has been shown to be a carcinogen. Phytochelatins (PCs), which are cysteine-rich and thio-reactive peptides, have high binding affinities for various metals including arsenic. Previously, we demonstrated that genetically engineered Saccharomyces cerevisiae strains expressing phytochelatin synthase (AtPCS) produced PCs and accumulated arsenic. In an effort to further improve the overall accumulation of arsenic, cysteine desulfhydrase, an aminotransferase that converts cysteine into hydrogen sulfide under aerobic condition, was co-expressed in order to promote the formation of larger AsS complexes. Yeast cells producing both AtPCS and cysteine desulfhydrase showed a higher level of arsenic accumulation than a simple cumulative effect of expressing both enzymes, confirming the coordinated action of hydrogen sulfide and PCs in the overall bioaccumulation of arsenic.  相似文献   

17.
Mutant strains not producing cellulases were induced and isolated from the cellulolytic fungus Trichoderma viride. Enrichment of mutants was carried out with the aid of nystatin selection. Mutants were shown to lack the ability to hydrolyze both soluble and crystalline cellulose. Mannanase and xylanase activities were also absent, indicating a common regulation for all these enzymes in T. viride. In some strains aryl-beta-glucosidase activity was also missing. Mutants grew normally, but the amount of proteins secreted into the medium was very low, and in most cases these proteins were qualitatively different from the proteins of the parent strain.  相似文献   

18.
Acid-activatable cysteine proteinases of Dictyostelium discoideum were first identified in spore extracts of strain SG1 using gelatin/SDS/PAGE, followed by acid treatments. Here we utilized the technique of acid activation to identify cryptic cysteine proteinases throughout auto-induced and heat-induced spore germination of D. discoideum strain SG2 and SG1. The major acid-activatable cysteine proteinase identified in SG2 and SG1 spore extracts was ddCP38 (D. discoideum cysteine proteinase with a molecular mass of 38 kDa) and ddCP48, respectively. Further investigation of these enzymes revealed that they were also base deactivatable with a treatment of ammonium chloride directly following acid activation. However, the most intriguing observation was the reversibility of the effects of base deactivation on the enzymes following a second treatment with acetic acid. Thus, we hypothesize that, unlike most mammalian cysteine proteinases which generally require the cleavage of a pro-peptide region for activation, these cysteine proteinases of D. discoideum likely undergo reversible conformational changes between latent and active forms. Moreover, we were able to detect these cryptic cysteine proteinases in the vegetative cells and early aggregates of both strains SG1 and SG2. Studies using 4-[(2S, 3S)-3-carboxyoxiran-2-ylcarbonyl-L-leucylamido]buty lguanidine, a cysteine proteinase inhibitor, revealed that acid activation of a portion of these proteinases was still achievable even after incubation with the inhibitor, further supporting the concept of two stable and reversible conformational arrangements of the enzymes. Thus, we speculate that the pH shuffles that modulate proteinase conformation and activity in vitro may be a reflection of the in vivo regulation of these enzymes via H+-ATPases and ammonia.  相似文献   

19.
—Certain of the sulphur containing amino acids have been associated with synaptic transmission in the central nervous system. The enzymes involved in the synthesis of these putative neurotransmitter or modulator compounds have a different subcellular distribution in rat brain from those enzymes that catalyse the synthesis of other compounds in this pathway. Methionine adenosyltransferase and 5-methyltetrahydrofolate-homocysteine methyltransferase catalyse reactions that maintain the methylation functions of the pathway and are found in soluble fractions. Cystathionine β-synthase, cystathionase, cysteine dioxygenase and cysteine sulphinic acid decarboxylase catalyse the synthesis of those sulphur-containing amino acids implicated in neurotransmitter functions and these enzymes have both paniculate and soluble components. Serine hydroxymethyltransferase, which also has a particulate fraction in brain, is responsible for the synthesis of the neurotransmitter glycine, in addition to its role in the methionine-related metabolism of folate.  相似文献   

20.
In Klebsiella aerogenes, arylsulfatase synthesis was repressed by inorganic sulfate, sulfite, sulfide, thiosulfate, and cysteine, but not by methionine under normal growth conditions. We isolated cysteine-requiring mutants (Cys minus), and mutants (AtsS minus, AtsR minus) in which the regulation of arylsulfatase synthesis was altered. In the cysteine auxotroph, enzyme synthesis was also repressed by inorganic sulfate or cysteine. Kinetic studies on mutants of the cysteine auxotroph showed that inorganic sulfate repressed arylsulfatase synthesis and that this was not due to cysteine formed by reduction of sulfate. Arylsulfatase synthesis in the AtsS minus mutant was not repressed by inorganic sulfate but was repressed by cysteine. This mutant strain had a normal level of inorganic sulfate transport. Another mutant strain, defective in the inorganic sulfate transport system, synthesized arylsulfatase in the presence of inorganic sulfate but not in the presence of cysteine. The AtsS minus mutant could synthesize the enzyme in the presence of inorganic sulfate but not cysteine. The AtsR minus mutant could synthesize the enzyme in the presence of either inorganic sulfate or cysteine. These results suggest that there are two independent functional corepressors of arylsulfatase synthesis in K. aerogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号