首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An antiparallel-directed potassium transport between subsidiary cells and guard cells which form the graminean stomatal complex has been proposed to drive stomatal movements in maize. To gain insights into the coordinated shuttling of K(+) ions between these cell types during stomatal closure, the effect of ABA on the time-dependent K(+) uptake and K(+) release channels as well as on the instantaneously activating non-selective cation channels (MgC) was examined in subsidiary cells. Patch-clamp studies revealed that ABA did not affect the MgC channels but differentially regulated the time-dependent K(+) channels. ABA caused a pronounced rise in time-dependent outward-rectifying K(+) currents (K(out)) at alkaline pH and decreased inward-rectifying K(+) currents (K(in)) in a Ca(2+)-dependent manner. Our results show that the ABA-induced changes in time-dependent K(in) and K(out) currents from subsidiary cells are very similar to those previously described for guard cells. Thus, the direction of K(+) transport in subsidiary cells and guard cells during ABA-induced closure does not seem to be grounded solely on the cell type-specific ABA regulation of K(+) channels.  相似文献   

2.
The stomatal complex of Zea mays consists of two guard cells with the pore in between them and two flanking subsidiary cells. Both guard cells and subsidiary cells are important elements for stoma physiology because a well-coordinated transmembrane shuttle transport of potassium and chloride ions occurs between these cells during stomatal movement. To shed light upon the corresponding transport systems from subsidiary cells, subsidiary cell protoplasts were enzymatically isolated and in turn, analyzed with the patch-clamp technique. Thereby, two K(+)-selective channel types were identified in the plasma membrane of subsidiary cells. With regard to their voltage-dependent gating behavior, they may act as hyperpolarization-dependent K(+) uptake and depolarization-activated K(+) release channels during stomatal movement. Interestingly, the K(+) channels from subsidiary cells and guard cells similarly responded to membrane voltage as well as to changes in the K(+) gradient. Further, the inward- and outward-rectifying K(+) current amplitude decreased upon a rise in the intracellular free Ca(2+) level from 2 nM to the micro M-range. The results indicate that the plasma membrane of subsidiary cells and guard cells has to be inversely polarized in order to achieve the anti-parallel direction of K(+) fluxes between these cell types during stomatal movement.  相似文献   

3.
Voltage-dependent potassium (Kv) channels play a pivotal role in the modulation of macrophage physiology. Macrophages are professional antigen-presenting cells and produce inflammatory and immunoactive substances that modulate the immune response. Blockage of Kv channels by specific antagonists decreases macrophage cytokine production and inhibits proliferation. Numerous pharmacological agents exert their effects on specific target cells by modifying the activity of their plasma membrane ion channels. Investigation of the mechanisms involved in the regulation of potassium ion conduction is, therefore, essential to the understanding of potassium channel functions in the immune response to infection and inflammation. Here, we demonstrate that the biophysical properties of voltage-dependent K+ currents are modified upon activation or immunosuppression in macrophages. This regulation is in accordance with changes in the molecular characteristics of the heterotetrameric Kv1.3/Kv1.5 channels, which generate the main Kv in macrophages. An increase in K+ current amplitude in lipopolysaccharide-activated macrophages is characterized by a faster C-type inactivation, a greater percentage of cumulative inactivation, and a more effective margatoxin (MgTx) inhibition than control cells. These biophysical parameters are related to an increase in Kv1.3 subunits in the Kv1.3/Kv1.5 hybrid channel. In contrast, dexamethasone decreased the C-type inactivation, the cumulative inactivation, and the sensitivity to MgTx concomitantly with a decrease in Kv1.3 expression. Neither of these treatments apparently altered the expression of Kv1.5. Our results demonstrate that the immunomodulation of macrophages triggers molecular and biophysical consequences in Kv1.3/Kv1.5 hybrid channels by altering the subunit stoichiometry.  相似文献   

4.
5.
To fertilize, mammalian sperm must complete a maturational process called capacitation. It is thought that the membrane potential of sperm hyperpolarizes during capacitation, possibly due to the opening of K(+) channels, but electrophysiological evidence is lacking. In this report, using patch-clamp recordings obtained from isolated mouse spermatogenic cells we document the presence of a novel K(+)-selective inwardly rectifying current. Macroscopic current activated at membrane potentials below the equilibrium potential for K(+) and its magnitude was dependent on the external K(+) concentration. The channels selected K(+) over other monovalent cations. Current was virtually absent when external K(+) was replaced with Na(+) or N-methyl-D-glucamine. Addition of Cs(+) or Ba(2+) (IC(50) of approximately 15 microM) to the external solution effectively blocked K(+) current. Dialyzing the cells with a Mg(2+)-free solution did not affect channel activity. Cytosolic acidification reversibly inhibited the current. We verified that the resting membrane potential of mouse sperm changed from -52 +/- 6 to -66 +/- 9 mV during capacitation in vitro. Notably, application of 0.3-1 mM Ba(2+) during capacitation prevented this hyperpolarization and decreased the subsequent exocytotic response to zona pellucida. A mechanism is proposed whereby opening of inwardly rectifying K(+) channels may produce hyperpolarization under physiological conditions and contribute to the cellular changes that give rise to the capacitated state in mature sperm.  相似文献   

6.
Properties of ATP-dependent K(+) channels in adrenocortical cells   总被引:6,自引:0,他引:6  
Bovine adrenocortical zona fasciculata (AZF)cells express a novel ATP-dependent K+-permeable channel(IAC). Whole cell and single-channel recordings were used to characterize IAC channels withrespect to ionic selectivity, conductance, and modulation bynucleotides, inorganic phosphates, and angiotensin II (ANG II). Inoutside-out patch recordings, the activity of unitaryIAC channels is enhanced by ATP in the patchpipette. These channels were K+ selective with nomeasurable Na+ or Ca2+ conductance. Insymmetrical K+ solutions with physiological concentrationsof divalent cations (M2+), IACchannels were outwardly rectifying with outward and inward chordconductances of 94.5 and 27.0 pS, respectively. In the absence ofM2+, conductance was nearly ohmic. Hydrolysis-resistantnucleotides including AMP-PNP and NaUTP were more potent than MgATP asactivators of whole cell IAC currents. Inorganicpolytriphosphate (PPPi) dramatically enhancedIAC activity. In current-clamp recordings, nucleotides and PPPi produced resting potentials in AZFcells that correlated with their effectiveness in activatingIAC. ANG II (10 nM) inhibited whole cellIAC currents when patch pipettes contained 5 mMMgATP but was ineffective in the presence of 5 mM NaUTP and 1 mM MgATP.Inhibition by ANG II was not reduced by selective kinase antagonists.These results demonstrate that IAC is adistinctive K+-selective channel whose activity isincreased by nucleotide triphosphates and PPPi.Furthermore, they suggest a model for IAC gatingthat is controlled through a cycle of ATP binding and hydrolysis.

  相似文献   

7.
TEA is a classical blocker of K(+) channels. From mutagenesis studies, it has been shown that external blockade by TEA is strongly dependent upon the presence of aromatic residue at Shaker position 449 which is located near the extracellular entrance to the pore (Heginbotham, L., and R. MacKinnon. 1992. Neuron. 8:483-491). The data suggest that TEA interacts simultaneously with the aromatic residues of the four monomers. The determination of the 3-D structure of the KcsA channel using X-ray crystallography (Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. Science. 280:69-77) has raised some issues that remain currently unresolved concerning the interpretation of these observations. In particular, the center of the Tyr82 side chains in KcsA (corresponding to position 449 in Shaker) forms a square of 11.8-A side, a distance which is too large to allow simultaneous interactions of a TEA molecule with the four aromatic side chains. In this paper, the external blockade by TEA is explored by molecular dynamics simulations of an atomic model of KcsA in an explicit phospholipid bilayer with aqueous salt solution. It is observed, in qualitative accord with the experimental results, that TEA is stable when bound to the external side of the wild-type KcsA channel (with Tyr82), but is unstable when bound to a mutant channel in which the tyrosine residue has been substituted by a threonine. The free energy profile of TEA relative to the pore is calculated using umbrella sampling simulations to characterize quantitatively the extracellular blockade. It is found, in remarkable agreement with the experiment, that the TEA is more stably bound by 2.3 kcal/mol to the channel with four tyrosine residues. In the case of the wild-type KcsA channel, TEA (which has the shape of a flattened oblate spheroid) acts as an ideal plug blocking the pore. In contrast, it is considerably more off-centered and tilted in the case of the mutant channel. The enhanced stability conferred by the tyrosine residues does not arise from Pi-cation interactions, but appears to be due to differences in the hydration structure of the TEA. Finally, it is shown that the experimentally observed voltage dependence of TEA block, which is traditionally interpreted in terms of the physical position of the TEA along the axis of the pore, must arise indirectly via coupling with the ions in the pore.  相似文献   

8.
Gap junctional communication is a universal property of metazoan animals. Biochemical, immunological, molecular biological, ultrastructural, biophysical and physiological studies of gap junctions have permitted increasingly detailed modelling of gap junctional structure and function. In spite of this progress the questions to be addressed are whether the channel is a mixed oligomer and the stoichiometry for each tissue is fixed. Also the extent of homology among gap junction proteins in different tissues and their possible regulatory function have to be clarified. As long as the different channels are not cloned and expressed, the ultrastructural correlates of the physiological concepts such as channel gating, selectivity and regulation, as well as assembly and disassembly cannot be determined. The genetic approach is in full progress. The observed differences between gap junction proteins from different tissues and the multiplicity of subunits in even one channel implies a functional specialization for gap junctions. Correlative studies on the molecular and cellular level should help to clarify the physiological meaning of intercellular communication by gap junctions.  相似文献   

9.
The Shaker B K(+) conductance (G(K)) collapses (in a reversible manner) if the membrane is depolarized and then repolarized in, 0 K(+), Na(+)-containing solutions (Gómez-Lagunas, F. 1997. J. Physiol. 499:3-15; Gómez-Lagunas, F. 1999. Biophys. J. 77:2988-2998). In this work, the role of Na(+) ions in the collapse of G(K) in 0-K(+) solutions, and in the behavior of the channels in low K(+) was studied. The main findings are as follows. First, in 0-K(+) solutions, the presence of Na(+) ions is an important factor that speeds the collapse of G(K). Second, external Na(+) fosters the drop of G(K) by binding to a site with a K(d) = 3.3 mM. External K(+) competes, in a mutually exclusive manner, with Na(o)(+) for binding to this site, with an estimated K(d) = 80 microM. Third, NMG and choline are relatively inert regarding the stability of G(K); fourth, with [K(o)(+)] = 0, the energy required to relieve Na(i)(+) block of Shaker (French, R.J., and J.B. Wells. 1977. J. Gen. Physiol. 70:707-724; Starkus, J.G., L. Kuschel, M. Rayner, and S. Heinemann. 2000. J. Gen. Physiol. 110:539-550) decreases with the molar fraction of Na(i)(+) (X(Na,i)), in an extent not accounted for by the change in Delta(mu)(Na). Finally, when X(Na,i) = 1, G(K) collapses by the binding of Na(i)(+) to two sites, with apparent K(d)s of 2 and 14.3 mM.  相似文献   

10.
Several Na(+) transporters are functionally abnormal in the hypertensive rat. Here, we examined the effects of a high-salt load on renal Na(+),K(+)-ATPase and the sodium-coupled glucose transporter (SGLT1) in Dahl salt-resistant (DR) and salt-sensitive (DS) rats. The protein levels of Na(+),K(+)-ATPase and SGLT1 in the DS rat were the same as those in the DR rat, and were not affected by the high-salt load. In the DS rat, a high-salt load decreased Na(+),K(+)-ATPase activity, and this decrease coincided with a decrease in the apparent Mechaelis constant (K(m)) for ATP, but not with a change of maximum velocity (V(max)). On the contrary, a high-salt load increased SGLT1 activity in the DS rat, which coincided with an increase in the V(max) for alpha-methyl glucopyranoside. The protein level of phosphorylated tyrosine residues in Na(+),K(+)-ATPase was decreased by the high-salt load in the DS rat. The amount of phosphorylated serine was not affected by the high-salt load in DR rats, and could not be detected in DS rats. On the other hand, the amount of phosphorylated serine residues in SGLT1 was increased by the high-salt load. However, the phosphorylated tyrosine was the same for all samples. Therefore, we concluded that the high-salt load changes the protein kinase levels in DS rats, and that the regulation of Na(+),K(+)-ATPase and SGLT1 activity occurs via protein phosphorylation.  相似文献   

11.
The perforated-patch techniquewas used to measure membrane currents in smooth muscle cells from sheepurethra. Depolarizing pulses evoked large transient outward currentsand several components of sustained current. The transient current anda component of sustained current were blocked by iberiotoxin, penitremA, and nifedipine but were unaffected by apamin or 4-aminopyridine,suggesting that they were mediated by large-conductanceCa2+-activated K+ (BK) channels. When the BKcurrent was blocked by exposure to penitrem A (100 nM) andCa2+-free bath solution, there remained a voltage-sensitiveK+ current that was moderately sensitive to blockade withtetraethylammonium (TEA; half-maximal effective dose = 3.0 ± 0.8 mM) but not 4-aminopyridine. Penitrem A (100 nM) increasedthe spike amplitude and plateau potential in slow waves evoked insingle cells, whereas addition of TEA (10 mM) further increased theplateau potential and duration. In conclusion, bothCa2+-activated and voltage-dependent K+currents were found in urethral myocytes. Both of these currents arecapable of contributing to the slow wave in these cells, suggesting that they are likely to influence urethral tone under certain conditions.

  相似文献   

12.
Glucanase-mediated degradation of beta-(1,3)(1,4)-glucans has been attributed to auxin-induced cell wall loosening and thus tissue growth in cereal plants, but the regulatory mechanisms for the auxin-enhancement of glucanase activities in situ are not fully understood. Here, we report evidence for possible mechanisms which might account for auxin-induced changes in glucanase activities. A likely cause for acceleration of wall glucan degradation is the change in the ratio of exo- and endoglucanases. The combined enzymes synergistically promote beta-(1,3)(1,4)-glucan hydrolysis. In addition, these enzyme activities are enhanced by other enzymic and non-enzymic proteins and are also partially stimulated by divalent cations such as Ca(2+) and Mg(2+) at certain pH values. The acceleration of glucan degradation mediated by auxin may be mediated by changes and/or interactions of any of these factors in situ.  相似文献   

13.
K(+) currents in Drosophila muscles have been resolved into two voltage-activated currents (I(A) and I(K)) and two Ca(2+)-activated currents (I(CF) and I(CS)). Mutations that affect I(A) (Shaker) and I(CF) (slowpoke) have helped greatly in the analysis of these currents and their role in membrane excitability. Lack of mutations that specifically affect channels for the delayed rectifier current (I(K)) has made their genetic and functional identity difficult to elucidate. With the help of mutations in the Shab K(+) channel gene, we show that this gene encodes the delayed rectifier K(+) channels in Drosophila. Three mutant alleles with a temperature-sensitive paralytic phenotype were analyzed. Analysis of the ionic currents from mutant larval body wall muscles showed a specific effect on delayed rectifier K(+) current (I(K)). Two of the mutant alleles contain missense mutations, one in the amino-terminal region of the channel protein and the other in the pore region of the channel. The third allele contains two deletions in the amino-terminal region and is a null allele. These observations identity the channels that carry the delayed rectifier current and provide an in vivo physiological role for the Shab-encoded K(+) channels in Drosophila. The availability of mutations that affect I(K) opens up possibilities for studying I(K) and its role in larval muscle excitability.  相似文献   

14.
15.
Active Na(+) absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and K(ATP) K(+) channel activities exerts sustained control in Na(+) transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the α-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K(+) channels, and 2) to determine the physiological impact of K(+) channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and K(ATP) channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24h) increased α-ENaC expression, similarly to K(ATP) activation by pinacidil. Conversely, pharmacological KvLQT1 and K(ATP) inhibition or silencing with siRNAs down-regulated α-ENaC expression. Furthermore, K(+) channel blockers significantly decreased α-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and K(ATP) activation dose-dependently enhanced α-ENaC promoter activity. Finally, we noted a physiological impact of changes in K(+) channel functions on ERK activity, α-, β-, γ-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K(+) channels regulate α-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.  相似文献   

16.
Both ATP-regulated (mitoK(ATP)) and large conductance calcium-activated (mitoBK(Ca)) potassium channels have been proposed to regulate mitochondrial K(+) influx and matrix volume and to mediate cardiac ischaemic preconditioning (IP). However, the specificity of the pharmacological agents used in these studies and the mechanisms underlying their effects on IP remain controversial. Here we used increasing concentrations of K(+)-ionophore (valinomycin) to stimulate respiration by rat liver and heart mitochondria in the presence of the K(+)/H(+) exchanger nigericin. This allowed rates of valinomycin-induced K(+) influx to be determined whilst parallel measurements of light scattering (A(520)) and matrix volume ((3)H(2)O and [(14)C]-sucrose) enabled rates of K(+) influx to be correlated with increases in matrix volume. Light scattering readily detected an increase in K(+) influx of <5 nmol K(+) min(-1) per mg protein corresponding to <2% mitochondrial matrix volume increase. In agreement with earlier data no light-scattering changes were observed in response to any mitoK(ATP) channel openers or blockers. However, the mitoBK(Ca) opener NS1619 (10-50 microM) did decrease light scattering slightly, but this was also seen in K(+)-free medium and was accompanied by uncoupling. Contrary to prediction, the mitoBK(Ca) blocker paxilline (10-50 microM) decreased rather than increased light scattering, and it also slightly uncoupled respiration. Our data argue against the presence of significant activities of either the mitoK(ATP) or the mitoBK(Ca) channel in rat liver and heart mitochondria and provide further evidence that preconditioning induced by pharmacological openers of these channels is more likely to involve alternative mechanisms.  相似文献   

17.
Smooth muscle membrane potential is determined, in part, by K(+) channels. In the companion paper to this article, we demonstrated that superior mesenteric arteries from rats made hypertensive with N(omega)-nitro-l-arginine (l-NNA) are depolarized and express less K(+) channel protein compared with those from normotensive rats. In the present study, we used patch-clamp techniques to test the hypothesis that l-NNA-induced hypertension reduces the functional expression of K(+) channels in smooth muscle. In whole cell experiments using a Ca(2+)-free pipette solution, current at 0 mV, largely due to voltage-dependent K(+) (K(V)) channels, was reduced approximately 60% by hypertension (2.7 +/- 0.4 vs. 1.1 +/- 0.2 pA/pF). Current at +100 mV with 300 nM free Ca(2+), largely due to large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels, was reduced approximately 40% by hypertension (181 +/- 24 vs. 101 +/- 28 pA/pF). Current blocked by 3 mM 4-aminopyridine, an inhibitor of many K(V) channel types, was reduced approximately 50% by hypertension (1.0 +/- 0.4 vs. 0.5 +/- 0.2 pA/pF). Current blocked by 1 mM tetraethylammonium, an inhibitor of BK(Ca) channels, was reduced approximately 40% by hypertension (86 +/- 14 vs. 53 +/- 19 pA/pF). Differences in BK(Ca) current magnitude are not attributable to changes in single-channel conductance or Ca(2+)/voltage sensitivity. The data support the hypothesis that l-NNA-induced hypertension reduces K(+) current in vascular smooth muscle. Reduced molecular and functional expression of K(+) channels may partly explain the depolarization and augmented contractile sensitivity of smooth muscle from l-NNA-treated rats.  相似文献   

18.
Gamel K  Torre V 《Biophysical journal》2000,79(5):2475-2493
The permeability ratio between K(+) and Na(+) ions in cyclic nucleotide-gated channels is close to 1, and the single channel conductance has almost the same value in the presence of K(+) or Na(+). Therefore, K(+) and Na(+) ions are thought to permeate with identical properties. In the alpha-subunit from bovine rods there is a loop of three prolines at positions 365 to 367. When proline 365 is mutated to a threonine, a cysteine, or an alanine, mutant channels exhibit a complex interaction between K(+) and Na(+) ions. Indeed K(+), Rb(+) and Cs(+) ions do not carry any significant macroscopic current through mutant channels P365T, P365C and P365A and block the current carried by Na(+) ions. Moreover in mutant P365T the presence of K(+) in the intracellular (or extracellular) medium caused the appearance of a large transient inward (or outward) current carried by Na(+) when the voltage command was quickly stepped to large negative (or positive) membrane voltages. This transient current is caused by a transient potentiation, i.e., an increase of the open probability. The permeation of organic cations through these mutant channels is almost identical to that through the wild type (w.t.) channel. Also in the w.t. channel a similar but smaller transient current is observed, associated to a slowing down of the channel gating evident when intracellular Na(+) is replaced with K(+). As a consequence, a rather simple mechanism can explain the complex behavior here described: when a K(+) ion is occupying the pore there is a profound blockage of the channel and a potentiation of gating immediately after the K(+) ion is driven out. Potentiation occurs because K(+) ions slow down the rate constant K(off) controlling channel closure. These results indicate that K(+) and Na(+) ions do not permeate through CNG channels in the same way and that K(+) ions influence the channel gating.  相似文献   

19.
Previous studies using the patch-clamp technique demonstrated the presence of a small conductance Cl(-) channel in the apical membrane of respiratory gill cells in primary culture originating from sea bass Dicentrarchus labrax. We used the same technique here to characterize potassium channels in this model. A K(+) channel of 123 +/- 3 pS was identified in the cell-attached configuration with 140 mM KCl in the bath and in the pipette. The activity of the channel declined rapidly with time and could be restored by the application of a negative pressure to the pipette (suction) or by substitution of the bath solution with a hypotonic solution (cell swelling). In the excised patch inside-out configuration, ionic substitution demonstrated a high selectivity of this channel for K(+) over Na(+) and Ca(2+). The mechanosensitivity of this channel to membrane stretching via suction was also observed in this configuration. Pharmacological studies demonstrated that this channel was inhibited by barium (5 mM), quinidine (500 microM), and gadolinium (500 microM). Channel activity decreased when cytoplasmic pH was decreased from 7.7 to 6.8. The effect of membrane distension by suction and exposure to hypotonic solutions on K(+) channel activity is consistent with the hypothesis that stretch-activated K(+) channels could mediate an increase in K(+) conductance during cell swelling.  相似文献   

20.
Electrophysiological, immunocytochemical, and RT-PCR methods were used to identify a K(+) conductance not yet described in MCF-7 human breast cancer cells. A voltage-dependent and TEA-sensitive K(+) current was the most commonly observed in these cells. The noninactivating K(+) current (I(K)) was insensitive to iberiotoxin (100 nM) and charybdotoxin (100 nM) but reduced by alpha-dendrotoxin (alpha-DTX). Perfusion of alpha-DTX reduced a fraction of I(K) amplitude in a dose-dependent manner (IC(50) = 0.6 +/- 0.3 nM). This DTX sensitive I(K) exhibited a voltage threshold at -20 mV and was not inactivated. The time constant of activation was 5.3 +/- 2.2 ms measured at +60 mV. The averaged half-activation potential and slope factor values were 14 +/- 1.6 mV and 10 +/- 1.4, respectively. Immunocytochemical analysis demonstrated that plasma membrane was labeled by anti-Kv1.1 but not by anti-Kv1.2 nor anti-Kv1.3 antibodies. Furthermore, only Kv1.1 mRNA was detected in MCF-7 cells. Incubation in 1 and 10 nM alpha-DTX reduced cell proliferation by 20 and 30%, respectively. These data provide the first evidence of Kv1.1 K(+) channels expression in MCF-7 cells and indicate that these channels are implicated in cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号